Cargando…

Morphological and functional alterations in adult boar epididymis: Effects of prenatal and postnatal administration of flutamide

BACKGROUND: The dynamic cross-talk between epididymal cells is hormonally regulated and, in part, through direct cell-to-cell interactions. To date, no information is available regarding possible impact of anti-androgens on the proteins involved in the gap junctional communication within the boar ep...

Descripción completa

Detalles Bibliográficos
Autores principales: Lydka, Marta, Kopera-Sobota, Ilona, Kotula-Balak, Malgorzata, Chojnacka, Katarzyna, Zak, Dorota, Bilinska, Barbara
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3050768/
https://www.ncbi.nlm.nih.gov/pubmed/21342526
http://dx.doi.org/10.1186/1751-0147-53-12
Descripción
Sumario:BACKGROUND: The dynamic cross-talk between epididymal cells is hormonally regulated and, in part, through direct cell-to-cell interactions. To date, no information is available regarding possible impact of anti-androgens on the proteins involved in the gap junctional communication within the boar epididymis. Thus, a question arised whether prenatal or postnatal exposure to an anti-androgen flutamide alters the expression of gap junction protein - connexin43 (Cx43) and androgen receptor (AR) expression in the caput, corpus and cauda epididymis and leads to delayed effects on morphology and function of adult pig epididymis. METHODS: First two experimental groups received flutamide prenatally on gestational days 20-28 and 80-88 (GD20 and GD80) and further two groups were exposed to flutamide postanatally on days 2-10 and 90-98 after birth (PD2 and PD90). Epididymides were collected from adult boars. Routine histology was performed using hematoxylin-eosin staining. The expression of Cx43 and AR were analyzed using immunohistochemistry and Western blotting. Both analyses were supported by quantitative approaches to demonstrate the variations of the expression levels following the treatment. Apoptotic cells were identified using TUNEL assay. RESULTS: Histological examination revealed differences in epididymal morphology of flutamide-exposed boars when compared to controls. Scarce spermatic content were seen within the corpus and cauda lumina of GD20, PD2 and PD90 groups. Concomitantly, frequency of epididymal cell apoptosis was significantly higher (p < 0.05) after exposure to flutamide at GD20. Moreover, in GD20, PD2, and PD90 groups, significantly lower AR expression (p < 0.05) was found in the principal and basal cells of the corpus and cauda regions, while in the stromal cells AR expression was significantly reduced (p < 0.05) along the epididymal duct. Concomitantly, a decrease in Cx43 expression (p < 0.05) was noticed in the stromal cells of the cauda region of GD20 and PD2 groups. This indicates high sensitivity of the stromal cells to androgen withdrawal. CONCLUSIONS: The region-specific alterations in the epididymis morphology and scarce spermatic content within the lumina of the corpus and cauda indicate that flutamide can induce delayed effects on the epididymal function of the adult boar by decrease in AR protein levels that results in altered androgen signaling. This may cause disturbances in androgen-dependent processes including Cx43 (de)regulation, however, we can not exclude the possibility that in response to flutamide decreased Cx43 expression may represent one mechanism responsible for functional disturbance of the boar epididymis.