Cargando…
Implications of copy number variation in people with chromosomal abnormalities: potential for greater variation in copy number state may contribute to variability of phenotype
Copy number variation is common in the human genome with many regions, overlapping thousands of genes, now known to be deleted or amplified. Aneuploidies and other forms of chromosomal imbalance have a wide range of adverse phenotypes and are a common cause of birth defects resulting in significant...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051043/ https://www.ncbi.nlm.nih.gov/pubmed/22132061 http://dx.doi.org/10.1007/s11568-010-9144-z |
Sumario: | Copy number variation is common in the human genome with many regions, overlapping thousands of genes, now known to be deleted or amplified. Aneuploidies and other forms of chromosomal imbalance have a wide range of adverse phenotypes and are a common cause of birth defects resulting in significant morbidity and mortality. “Normal” copy number variants (CNVs) embedded within the regions of chromosome imbalance may affect the clinical outcomes by altering the local copy number of important genes or regulatory regions: this could alleviate or exacerbate certain phenotypes. In this way CNVs may contribute to the clinical variability seen in many disorders caused by chromosomal abnormalities, such as the congenital heart defects (CHD) seen in ~40% of Down’s syndrome (DS) patients. Investigation of CNVs may therefore help to pinpoint critical genes or regulatory elements, elucidating the molecular mechanisms underlying these conditions, also shedding light on the aetiology of such phenotypes in people without major chromosome imbalances, and ultimately leading to their improved detection and treatment. |
---|