Cargando…
Fitting Neuron Models to Spike Trains
Computational modeling is increasingly used to understand the function of neural circuits in systems neuroscience. These studies require models of individual neurons with realistic input–output properties. Recently, it was found that spiking models can accurately predict the precisely timed spike tr...
Autores principales: | Rossant, Cyrille, Goodman, Dan F. M., Fontaine, Bertrand, Platkiewicz, Jonathan, Magnusson, Anna K., Brette, Romain |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051271/ https://www.ncbi.nlm.nih.gov/pubmed/21415925 http://dx.doi.org/10.3389/fnins.2011.00009 |
Ejemplares similares
-
Automatic Fitting of Spiking Neuron Models to Electrophysiological Recordings
por: Rossant, Cyrille, et al.
Publicado: (2010) -
A dynamical system analysis of the adaptive spike threshold
por: Platkiewicz, Jonathan, et al.
Publicado: (2007) -
Impact of Fast Sodium Channel Inactivation on Spike Threshold Dynamics and Synaptic Integration
por: Platkiewicz, Jonathan, et al.
Publicado: (2011) -
Brian: A Simulator for Spiking Neural Networks in Python
por: Goodman, Dan, et al.
Publicado: (2008) -
Brian Hears: Online Auditory Processing Using Vectorization Over Channels
por: Fontaine, Bertrand, et al.
Publicado: (2011)