Cargando…

Effects of rasagiline, its metabolite aminoindan and selegiline on glutamate receptor mediated signalling in the rat hippocampus slice in vitro

BACKGROUND: Rasagiline, a new drug developed to treat Parkinson's disease, is known to inhibit monoamine oxidase B. However, its metabolite R-(-)-aminoindan does not show this kind of activity. The present series of in vitro experiments using the rat hippocampal slice preparation deals with eff...

Descripción completa

Detalles Bibliográficos
Autores principales: Dimpfel, W, Hoffmann, JA
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051903/
https://www.ncbi.nlm.nih.gov/pubmed/21338509
http://dx.doi.org/10.1186/1471-2210-11-2
_version_ 1782199579608875008
author Dimpfel, W
Hoffmann, JA
author_facet Dimpfel, W
Hoffmann, JA
author_sort Dimpfel, W
collection PubMed
description BACKGROUND: Rasagiline, a new drug developed to treat Parkinson's disease, is known to inhibit monoamine oxidase B. However, its metabolite R-(-)-aminoindan does not show this kind of activity. The present series of in vitro experiments using the rat hippocampal slice preparation deals with effects of both compounds on the pyramidal cell response after electric stimulation of the Schaffer Collaterals in comparison to selegiline, another MAO B inhibitor. METHOD: Stimulation of the Schaffer Collaterals by single stimuli (SS) or theta burst stimulation (TBS) resulted in stable responses of pyramidal cells measured as population spike amplitude (about 1 mV under control SS conditions or about 2 mV after TBS). RESULTS: During the first series, this response was attenuated in the presence of rasagiline and aminoindan-to a lesser degree of selegiline-in a concentration dependent manner (5-50 μM) after single stimuli as well as under TBS. During oxygen/glucose deprivation for 10 min the amplitude of the population spike breaks down by 75%. The presence of rasagiline and aminoindan, but rarely the presence of selegiline, prevented this break down. Following glutamate receptor mediated enhancements of neuronal transmission in a second series of experiments very clear differences could be observed in comparison to the action of selegiline: NMDA receptor, AMPA receptor as well as metabotropic glutamate receptor mediated increases of transmission were concentration dependently (0,3 - 2 μM) antagonized by rasagiline and aminoindan, but not by selegiline. On the opposite, only selegiline attenuated kainate receptor mediated increases of excitability. Thus, both monoamino oxidase (MAO) B inhibitors show attenuation of glutamatergic transmission in the hippocampus but interfere with different receptor mediated excitatory modulations at low concentrations. CONCLUSIONS: Since aminoindan does not induce MAO B inhibition, these effects must be regarded as being independent from MAO B inhibition. The results provide strong evidence for a neuroprotective activity of rasagiline and aminoindan in concert with an extended clinical indication into the direction of other diseases like Alzheimer's disease or stroke.
format Text
id pubmed-3051903
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-30519032011-03-10 Effects of rasagiline, its metabolite aminoindan and selegiline on glutamate receptor mediated signalling in the rat hippocampus slice in vitro Dimpfel, W Hoffmann, JA BMC Pharmacol Research Article BACKGROUND: Rasagiline, a new drug developed to treat Parkinson's disease, is known to inhibit monoamine oxidase B. However, its metabolite R-(-)-aminoindan does not show this kind of activity. The present series of in vitro experiments using the rat hippocampal slice preparation deals with effects of both compounds on the pyramidal cell response after electric stimulation of the Schaffer Collaterals in comparison to selegiline, another MAO B inhibitor. METHOD: Stimulation of the Schaffer Collaterals by single stimuli (SS) or theta burst stimulation (TBS) resulted in stable responses of pyramidal cells measured as population spike amplitude (about 1 mV under control SS conditions or about 2 mV after TBS). RESULTS: During the first series, this response was attenuated in the presence of rasagiline and aminoindan-to a lesser degree of selegiline-in a concentration dependent manner (5-50 μM) after single stimuli as well as under TBS. During oxygen/glucose deprivation for 10 min the amplitude of the population spike breaks down by 75%. The presence of rasagiline and aminoindan, but rarely the presence of selegiline, prevented this break down. Following glutamate receptor mediated enhancements of neuronal transmission in a second series of experiments very clear differences could be observed in comparison to the action of selegiline: NMDA receptor, AMPA receptor as well as metabotropic glutamate receptor mediated increases of transmission were concentration dependently (0,3 - 2 μM) antagonized by rasagiline and aminoindan, but not by selegiline. On the opposite, only selegiline attenuated kainate receptor mediated increases of excitability. Thus, both monoamino oxidase (MAO) B inhibitors show attenuation of glutamatergic transmission in the hippocampus but interfere with different receptor mediated excitatory modulations at low concentrations. CONCLUSIONS: Since aminoindan does not induce MAO B inhibition, these effects must be regarded as being independent from MAO B inhibition. The results provide strong evidence for a neuroprotective activity of rasagiline and aminoindan in concert with an extended clinical indication into the direction of other diseases like Alzheimer's disease or stroke. BioMed Central 2011-02-21 /pmc/articles/PMC3051903/ /pubmed/21338509 http://dx.doi.org/10.1186/1471-2210-11-2 Text en Copyright ©2011 Dimpfel and Hoffmann; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Dimpfel, W
Hoffmann, JA
Effects of rasagiline, its metabolite aminoindan and selegiline on glutamate receptor mediated signalling in the rat hippocampus slice in vitro
title Effects of rasagiline, its metabolite aminoindan and selegiline on glutamate receptor mediated signalling in the rat hippocampus slice in vitro
title_full Effects of rasagiline, its metabolite aminoindan and selegiline on glutamate receptor mediated signalling in the rat hippocampus slice in vitro
title_fullStr Effects of rasagiline, its metabolite aminoindan and selegiline on glutamate receptor mediated signalling in the rat hippocampus slice in vitro
title_full_unstemmed Effects of rasagiline, its metabolite aminoindan and selegiline on glutamate receptor mediated signalling in the rat hippocampus slice in vitro
title_short Effects of rasagiline, its metabolite aminoindan and selegiline on glutamate receptor mediated signalling in the rat hippocampus slice in vitro
title_sort effects of rasagiline, its metabolite aminoindan and selegiline on glutamate receptor mediated signalling in the rat hippocampus slice in vitro
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051903/
https://www.ncbi.nlm.nih.gov/pubmed/21338509
http://dx.doi.org/10.1186/1471-2210-11-2
work_keys_str_mv AT dimpfelw effectsofrasagilineitsmetaboliteaminoindanandselegilineonglutamatereceptormediatedsignallingintherathippocampussliceinvitro
AT hoffmannja effectsofrasagilineitsmetaboliteaminoindanandselegilineonglutamatereceptormediatedsignallingintherathippocampussliceinvitro