Cargando…
Zebrafish microRNA-126 determines hematopoietic cell fate through c-Myb
Precise regulatory mechanisms are required to appropriately modulate the cellular levels of transcription factors controlling cell fate decisions during blood cell development. Here, we show that miR-126 is a novel physiological regulator of the proto-oncogene c-myb during definitive hematopoiesis....
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3053419/ https://www.ncbi.nlm.nih.gov/pubmed/21079614 http://dx.doi.org/10.1038/leu.2010.280 |
Sumario: | Precise regulatory mechanisms are required to appropriately modulate the cellular levels of transcription factors controlling cell fate decisions during blood cell development. Here, we show that miR-126 is a novel physiological regulator of the proto-oncogene c-myb during definitive hematopoiesis. We show that knockdown of miR-126 results in increased c-Myb levels and promotes erythropoiesis at the expense of thrombopoiesis in vivo. We further provide evidence that specification of thrombocyte versus erythrocyte cell lineages is altered by the concerted activities of the miRNAs miR-126 and miR-150. Both microRNAs are required but not sufficient individually to precisely regulate the cell fate decision between erythroid and megakaryocytic lineages during definitive hematopoiesis in vivo. These results support the notion that microRNAs not only act to provide precision to developmental programs but also are essential determinants in the control of variable potential functions of a single gene during hematopoiesis. |
---|