Cargando…
Distinct patterns of cleavage and translocation of cell cycle control proteins in CD95-induced and p53-induced apoptosis.
Apoptotic cell death induced by p53 occurs at a late G1 cell cycle checkpoint termed the restriction (R) point, and it has been proposed that p53-induced apoptosis causes upregulation of CD95. However, as cells with defective in CD95 signaling pathway are still sensitive to p53-induced apoptosis, CD...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Korean Academy of Medical Sciences
2003
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055078/ https://www.ncbi.nlm.nih.gov/pubmed/12923319 |
Sumario: | Apoptotic cell death induced by p53 occurs at a late G1 cell cycle checkpoint termed the restriction (R) point, and it has been proposed that p53-induced apoptosis causes upregulation of CD95. However, as cells with defective in CD95 signaling pathway are still sensitive to p53-induced apoptosis, CD95 cannot be the sole factor resulting in apoptosis. In addition, unlike p53-induced apoptosis, the relationship between CD95-mediated apoptosis and the cell cycle is not clearly understood. It would therefore be worth investigating whether CD95-mediated cell death is pertinent with p53-induced apoptosis in view of cell cycle related molecules. In this report, biochemical analysis showed that etoposide-induced apoptosis caused the induction and the nuclear translocation of effector molecules involved in G1 cell cycle checkpoint. However, there was no such translocation in the case of CD95-mediated death. Thus, although both types of apoptosis involved caspase activation, the cell cycle related proteins responded differently. This argues against the idea that p53-induced apoptosis occurs through the induction of CD95/CD95L expression. |
---|