Cargando…
Cryopreservation enhances embryogenic capacity of Gentiana cruciata (L.) suspension culture and maintains (epi)genetic uniformity of regenerants
The embryogenic cell suspension culture of Gentiana cruciata, cryopreserved by the encapsulation/dehydration method, survived both short- (48 h) and long-term (1.5 years) cryostorage with more than 80% viability. To assess the influence of cryotreatments on the embryogenic potential, a proembryogeni...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3056987/ https://www.ncbi.nlm.nih.gov/pubmed/21161232 http://dx.doi.org/10.1007/s00299-010-0970-1 |
Sumario: | The embryogenic cell suspension culture of Gentiana cruciata, cryopreserved by the encapsulation/dehydration method, survived both short- (48 h) and long-term (1.5 years) cryostorage with more than 80% viability. To assess the influence of cryotreatments on the embryogenic potential, a proembryogenic mass was encapsulated and exposed to the following treatments: (1) osmotic dehydration (OD), (2) OD + air desiccation (AD) and (3) OD + AD + cryostorage (LN). The somatic embryogenesis efficiency increased ten times after osmotic dehydration. The AD and LN cryotreatments did not cause any significant alterations in somatic embryo production. We monitored the (epi)genetic stability of 288 regenerants derived from: non-cryotreated, short-term, and long-term cryostored tissue using metAFLP markers and ten primer combinations. Changes in the sequence and DNA methylation levels were studied by subjecting the DNA to digestion with two pairs of isoschisomer restriction enzymes (KpnI/MseI and Acc65I/MseI). Two new AFLP unique DNA fragments at the DNA sequence level, with no differences at the methylation level, were found between regenerants derived from cryopreserved tissue, compared with the non-cryotreated controls. The Acc65I/MseI methylation levels for the three groups of regenerants were not significantly different. Cluster analysis was capable of identifying a number of sub-clusters. Only one of the sub-clusters comprises almost all regenerants derived from non-cryotreated and short-term cryostored tissue. Plantlets derived from long-term cryostored tissue were grouped into separate clusters. The observed AFLP alterations did not appear to be associated with the use of cryopreservation, but were probably related to the process of in vitro culture. |
---|