Cargando…
Correlation of Clinical Trachoma and Infection in Aboriginal Communities
BACKGROUND: Trachoma is the leading infectious cause of blindness due to conjunctival infection with Chlamydia trachomatis. The presence of active trachoma and evidence of infection are poorly correlated and a strong immunologically-mediated inflammatory response means that clinical signs last much...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057949/ https://www.ncbi.nlm.nih.gov/pubmed/21423648 http://dx.doi.org/10.1371/journal.pntd.0000986 |
Sumario: | BACKGROUND: Trachoma is the leading infectious cause of blindness due to conjunctival infection with Chlamydia trachomatis. The presence of active trachoma and evidence of infection are poorly correlated and a strong immunologically-mediated inflammatory response means that clinical signs last much longer than infection. This population-based study in five Aboriginal communities endemic for trachoma in northern Australia compared a fine grading of clinical trachoma with diagnostic positivity and organism load. METHODS: A consensus fine grading of trachoma, based on clinical assessment and photograding, was compared to PCR, a lipopolysacharide (LPS)-based point-of-care (POC) and a 16S RNA-based nucleic acid amplification test (NAAT). Organism load was measured in PCR positive samples. RESULTS: A total of 1282 residents, or 85.2% of the study population, was examined. Taking the findings of both eyes, the prevalence of trachomatous inflammation-follicular (TF) in children aged 1–9 years was 25.1% (96/383) of whom 13 (13.7%) were PCR positive on the left eye. When clinical data were limited to the left eye as this was tested for PCR, the prevalence of TF decreased to 21.4% (82/383). The 301 TF negative children, 13 (4.3%) were PCR positive. The fine grading of active trachoma strongly correlated with organism load and disease severity (rs = 0.498, P = 0.0004). Overall, 53% of clinical activity (TF(1) or TF(2)) and 59% of PCR positivity was found in those with disease scores less than the WHO simplified grade of TF. CONCLUSION: Detailed studies of the pathogenesis, distribution and natural history of trachoma should use finer grading schemes for the more precise identification of clinical status. In low prevalence areas, the LPS-based POC test lacks the sensitivity to detect active ocular infection and nucleic acid amplification tests such as PCR or the 16S-RNA based NAAT performed better. Trachoma in the Aboriginal communities requires specific control measures. |
---|