Cargando…
Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting
BACKGROUND: Laser-assisted bioprinting of multi-cellular replicates in accordance with CAD blueprint may substantially improve our understandings of fundamental aspects of 3 D cell-cell and cell-matrix interactions in vitro. For predictable printing results, a profound knowledge about effects of dif...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058070/ https://www.ncbi.nlm.nih.gov/pubmed/21385332 http://dx.doi.org/10.1186/1475-925X-10-19 |
_version_ | 1782200337432576000 |
---|---|
author | Gruene, Martin Unger, Claudia Koch, Lothar Deiwick, Andrea Chichkov, Boris |
author_facet | Gruene, Martin Unger, Claudia Koch, Lothar Deiwick, Andrea Chichkov, Boris |
author_sort | Gruene, Martin |
collection | PubMed |
description | BACKGROUND: Laser-assisted bioprinting of multi-cellular replicates in accordance with CAD blueprint may substantially improve our understandings of fundamental aspects of 3 D cell-cell and cell-matrix interactions in vitro. For predictable printing results, a profound knowledge about effects of different processing parameters is essential for realisation of 3 D cell models with well-defined cell densities. METHODS: Time-resolved imaging of the hydrogel jet dynamics and quantitative assessment of the dependence of printed droplet diameter on the process characteristics were conducted. RESULTS: The existence of a counterjet was visualised, proving the bubble collapsing theory for the jet formation. Furthermore, by adjusting the viscosity and height of the applied hydrogel layer in combination with different laser pulse energies, the printing of volumes in the range of 10 to 7000 picolitres was demonstrated. Additionally, the relationship between the viscosity and the layer thickness at different laser pulse energies on the printed droplet volume was identified. CONCLUSIONS: These findings are essential for the advancement of laser-assisted bioprinting by enabling predictable printing results and the integration of computational methods in the generation of 3 D multi-cellular constructs. |
format | Text |
id | pubmed-3058070 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-30580702011-03-16 Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting Gruene, Martin Unger, Claudia Koch, Lothar Deiwick, Andrea Chichkov, Boris Biomed Eng Online Research BACKGROUND: Laser-assisted bioprinting of multi-cellular replicates in accordance with CAD blueprint may substantially improve our understandings of fundamental aspects of 3 D cell-cell and cell-matrix interactions in vitro. For predictable printing results, a profound knowledge about effects of different processing parameters is essential for realisation of 3 D cell models with well-defined cell densities. METHODS: Time-resolved imaging of the hydrogel jet dynamics and quantitative assessment of the dependence of printed droplet diameter on the process characteristics were conducted. RESULTS: The existence of a counterjet was visualised, proving the bubble collapsing theory for the jet formation. Furthermore, by adjusting the viscosity and height of the applied hydrogel layer in combination with different laser pulse energies, the printing of volumes in the range of 10 to 7000 picolitres was demonstrated. Additionally, the relationship between the viscosity and the layer thickness at different laser pulse energies on the printed droplet volume was identified. CONCLUSIONS: These findings are essential for the advancement of laser-assisted bioprinting by enabling predictable printing results and the integration of computational methods in the generation of 3 D multi-cellular constructs. BioMed Central 2011-03-07 /pmc/articles/PMC3058070/ /pubmed/21385332 http://dx.doi.org/10.1186/1475-925X-10-19 Text en Copyright ©2011 Gruene et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Gruene, Martin Unger, Claudia Koch, Lothar Deiwick, Andrea Chichkov, Boris Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting |
title | Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting |
title_full | Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting |
title_fullStr | Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting |
title_full_unstemmed | Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting |
title_short | Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting |
title_sort | dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058070/ https://www.ncbi.nlm.nih.gov/pubmed/21385332 http://dx.doi.org/10.1186/1475-925X-10-19 |
work_keys_str_mv | AT gruenemartin dispensingpicotonanolitreofanaturalhydrogelbylaserassistedbioprinting AT ungerclaudia dispensingpicotonanolitreofanaturalhydrogelbylaserassistedbioprinting AT kochlothar dispensingpicotonanolitreofanaturalhydrogelbylaserassistedbioprinting AT deiwickandrea dispensingpicotonanolitreofanaturalhydrogelbylaserassistedbioprinting AT chichkovboris dispensingpicotonanolitreofanaturalhydrogelbylaserassistedbioprinting |