Cargando…

ATM Damage Response and XLF Repair Factor are Functionally Redundant In Joining DNA Breaks

Classical non-homologous DNA end-joining (C-NHEJ) is a major mammalian DNA double strand break (DSB) repair pathway. Deficiencies for C-NHEJ factors, such as XRCC4, abrogate lymphocyte development, owing to a strict requirement for C-NHEJ to join V(D)J recombination DSB intermediates1,2. The XRCC4-l...

Descripción completa

Detalles Bibliográficos
Autores principales: Zha, Shan, Guo, Chunguang, Boboila, Cristian, Oksenych, Valentyn, Cheng, Hwei-Ling, Zhang, Yu, Wesemann, Duane R., Yuen, Grace, Patel, Harin, Goff, Peter H., Dubois, Richard L., Alt, Frederick W.
Formato: Texto
Lenguaje:English
Publicado: 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058373/
https://www.ncbi.nlm.nih.gov/pubmed/21160472
http://dx.doi.org/10.1038/nature09604
Descripción
Sumario:Classical non-homologous DNA end-joining (C-NHEJ) is a major mammalian DNA double strand break (DSB) repair pathway. Deficiencies for C-NHEJ factors, such as XRCC4, abrogate lymphocyte development, owing to a strict requirement for C-NHEJ to join V(D)J recombination DSB intermediates1,2. The XRCC4-like factor (XLF) is mutated in certain immunodeficient human patients and has been implicated in C-NHEJ3,4,5,6. Yet, XLF-deficient mice have relatively normal lymphocyte development and their lymphocytes support normal V(D)J recombination5. The Ataxia Telangiectasia-Mutated protein (“ATM”) detects DSBs and activates DSB responses by phosphorylating substrates including histone H2AX7. However, ATM-deficiency causes only modest V(D)J recombination and lymphocyte developmental defects, and H2AX-deficiency does not measurably impact these processes7,8,9. Here, we show that XLF, ATM, and H2AX all have fundamental roles in processing and joining ends during V(D)J recombination; but that these roles have been masked by unanticipated functional redundancies. Thus, combined ATM/XLF-deficiency nearly blocks mouse lymphocyte development due inability to process and join chromosomal V(D)J recombination DSB intermediates. Combined XLF and ATM deficiency also severely impairs C-NHEJ, but not alternative end-joining, during IgH class switch recombination. Redundant ATM and XLF functions in C-NHEJ are mediated via ATM kinase activity and are not required for extra-chromosomal V(D)J recombination, suggesting a role for chromatin-associated ATM substrates. Correspondingly, conditional H2AX inactivation in XLF-deficient pro-B lines leads to V(D)J recombination defects associated with marked degradation of unjoined V(D)J ends, revealing that H2AX indeed has a role in this process.