Cargando…
Microfluidic approaches for the fabrication of gradient crosslinked networks based on poly(ethylene glycol) and hyperbranched polymers for manipulation of cell interactions
High-throughput methods allow rapid examination of parameter space to characterize materials and develop new polymeric formulations for biomaterials applications. One limitation is the difficulty of preparing libraries and performing high-throughput screening with conventional instrumentation and sa...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Wiley Subscription Services, Inc., A Wiley Company
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059081/ https://www.ncbi.nlm.nih.gov/pubmed/21105168 http://dx.doi.org/10.1002/jbm.a.32974 |
_version_ | 1782200390113034240 |
---|---|
author | Pedron, S Peinado, C Bosch, P Benton, J A Anseth, K S |
author_facet | Pedron, S Peinado, C Bosch, P Benton, J A Anseth, K S |
author_sort | Pedron, S |
collection | PubMed |
description | High-throughput methods allow rapid examination of parameter space to characterize materials and develop new polymeric formulations for biomaterials applications. One limitation is the difficulty of preparing libraries and performing high-throughput screening with conventional instrumentation and sample preparation. Here, we describe the fabrication of substrate materials with controlled gradients in composition by a rapid method of micromixing followed by a photopolymerization reaction. Specifically, poly(ethylene glycol) dimethacrylate was copolymerized with a hyperbranched multimethacrylate (P1000MA or H30MA) in a gradient manner. The extent of methacrylate conversion and the final network composition were determined by near-infrared spectroscopy, and mechanical properties were measured by nanoindentation. A relationship was observed between the elastic modulus and network crosslinking density. Roughness and hydrophilicity were increased on surfaces with a higher concentration of P1000MA. These results likely relate to a phase segregation process of the hyperbranched macromer that occurs during the photopolymerization reaction. On the other hand, the decrease in the final conversion in H30MA polymerization reactions was attributed to the lower termination rate as a consequence of the softening of the network. Valvular interstitial cell attachment was evaluated on these gradient substrates as a demonstration of studying cell morphology as a function of the local substrate properties. Data revealed that the presence of P1000MA affects cell–material interaction with a higher number of adhered cells and more cell spreading on gradient regions with a higher content of the multifunctional crosslinker. |
format | Text |
id | pubmed-3059081 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Wiley Subscription Services, Inc., A Wiley Company |
record_format | MEDLINE/PubMed |
spelling | pubmed-30590812012-01-01 Microfluidic approaches for the fabrication of gradient crosslinked networks based on poly(ethylene glycol) and hyperbranched polymers for manipulation of cell interactions Pedron, S Peinado, C Bosch, P Benton, J A Anseth, K S J Biomed Mater Res A Original Articles High-throughput methods allow rapid examination of parameter space to characterize materials and develop new polymeric formulations for biomaterials applications. One limitation is the difficulty of preparing libraries and performing high-throughput screening with conventional instrumentation and sample preparation. Here, we describe the fabrication of substrate materials with controlled gradients in composition by a rapid method of micromixing followed by a photopolymerization reaction. Specifically, poly(ethylene glycol) dimethacrylate was copolymerized with a hyperbranched multimethacrylate (P1000MA or H30MA) in a gradient manner. The extent of methacrylate conversion and the final network composition were determined by near-infrared spectroscopy, and mechanical properties were measured by nanoindentation. A relationship was observed between the elastic modulus and network crosslinking density. Roughness and hydrophilicity were increased on surfaces with a higher concentration of P1000MA. These results likely relate to a phase segregation process of the hyperbranched macromer that occurs during the photopolymerization reaction. On the other hand, the decrease in the final conversion in H30MA polymerization reactions was attributed to the lower termination rate as a consequence of the softening of the network. Valvular interstitial cell attachment was evaluated on these gradient substrates as a demonstration of studying cell morphology as a function of the local substrate properties. Data revealed that the presence of P1000MA affects cell–material interaction with a higher number of adhered cells and more cell spreading on gradient regions with a higher content of the multifunctional crosslinker. Wiley Subscription Services, Inc., A Wiley Company 2011-01 /pmc/articles/PMC3059081/ /pubmed/21105168 http://dx.doi.org/10.1002/jbm.a.32974 Text en Copyright © 2010 Wiley Periodicals, Inc. http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
spellingShingle | Original Articles Pedron, S Peinado, C Bosch, P Benton, J A Anseth, K S Microfluidic approaches for the fabrication of gradient crosslinked networks based on poly(ethylene glycol) and hyperbranched polymers for manipulation of cell interactions |
title | Microfluidic approaches for the fabrication of gradient crosslinked networks based on
poly(ethylene glycol) and hyperbranched polymers for manipulation of cell
interactions |
title_full | Microfluidic approaches for the fabrication of gradient crosslinked networks based on
poly(ethylene glycol) and hyperbranched polymers for manipulation of cell
interactions |
title_fullStr | Microfluidic approaches for the fabrication of gradient crosslinked networks based on
poly(ethylene glycol) and hyperbranched polymers for manipulation of cell
interactions |
title_full_unstemmed | Microfluidic approaches for the fabrication of gradient crosslinked networks based on
poly(ethylene glycol) and hyperbranched polymers for manipulation of cell
interactions |
title_short | Microfluidic approaches for the fabrication of gradient crosslinked networks based on
poly(ethylene glycol) and hyperbranched polymers for manipulation of cell
interactions |
title_sort | microfluidic approaches for the fabrication of gradient crosslinked networks based on
poly(ethylene glycol) and hyperbranched polymers for manipulation of cell
interactions |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059081/ https://www.ncbi.nlm.nih.gov/pubmed/21105168 http://dx.doi.org/10.1002/jbm.a.32974 |
work_keys_str_mv | AT pedrons microfluidicapproachesforthefabricationofgradientcrosslinkednetworksbasedonpolyethyleneglycolandhyperbranchedpolymersformanipulationofcellinteractions AT peinadoc microfluidicapproachesforthefabricationofgradientcrosslinkednetworksbasedonpolyethyleneglycolandhyperbranchedpolymersformanipulationofcellinteractions AT boschp microfluidicapproachesforthefabricationofgradientcrosslinkednetworksbasedonpolyethyleneglycolandhyperbranchedpolymersformanipulationofcellinteractions AT bentonja microfluidicapproachesforthefabricationofgradientcrosslinkednetworksbasedonpolyethyleneglycolandhyperbranchedpolymersformanipulationofcellinteractions AT ansethks microfluidicapproachesforthefabricationofgradientcrosslinkednetworksbasedonpolyethyleneglycolandhyperbranchedpolymersformanipulationofcellinteractions |