Cargando…

Exploring Indirect Sources of Human Exposure to Perfluoroalkyl Carboxylates (PFCAs): Evaluating Uptake, Elimination, and Biotransformation of Polyfluoroalkyl Phosphate Esters (PAPs) in the Rat

BACKGROUND: Perfluorinated carboxylic acids (PFCAs) are ubiquitous in human sera worldwide. Biotransformation of the polyfluoroalkyl phosphate esters (PAPs) is a possible source of PFCA exposure, because PAPs are used in food-contact paper packaging and have been observed in human sera. OBJECTIVES:...

Descripción completa

Detalles Bibliográficos
Autores principales: D’eon, Jessica C., Mabury, Scott A.
Formato: Texto
Lenguaje:English
Publicado: National Institute of Environmental Health Sciences 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059997/
https://www.ncbi.nlm.nih.gov/pubmed/21059488
http://dx.doi.org/10.1289/ehp.1002409
_version_ 1782200477406986240
author D’eon, Jessica C.
Mabury, Scott A.
author_facet D’eon, Jessica C.
Mabury, Scott A.
author_sort D’eon, Jessica C.
collection PubMed
description BACKGROUND: Perfluorinated carboxylic acids (PFCAs) are ubiquitous in human sera worldwide. Biotransformation of the polyfluoroalkyl phosphate esters (PAPs) is a possible source of PFCA exposure, because PAPs are used in food-contact paper packaging and have been observed in human sera. OBJECTIVES: We determined pharmacokinetic parameters for the PAP monoesters (monoPAPs) and PAP diesters (diPAPs), as well as biotransformation yields to the PFCAs, using a rat model. METHODS: The animals were dosed intravenously or by oral gavage with a mixture of 4:2, 6:2, 8:2, and 10:2 monoPAP or diPAP chain lengths. Concentrations of the PAPs and PFCAs, as well as metabolic intermediates and phase II metabolites, were monitored over time in blood, urine, and feces. RESULTS: The diPAPs were bioavailable, with bioavailability decreasing as the chain length increased from 4 to 10 perfluorinated carbons. The monoPAPs were not absorbed from the gut; however, we found evidence to suggest phosphate-ester cleavage within the gut contents. We observed biotransformation to the PFCAs for both monoPAP and diPAP congeners. CONCLUSIONS: Using experimentally derived biotransformation yields, perfluorooctanoic acid (PFOA) sera concentrations were predicted from the biotransformation of 8:2 diPAP at concentrations observed in human serum. Because of the long human serum half-life of PFOA, biotransformation of diPAP even with low-level exposure could over time result in significant exposure to PFOA. Although humans are exposed directly to PFCAs in food and dust, the pharmacokinetic parameters determined here suggest that PAP exposure should be considered a significant indirect source of human PFCA contamination.
format Text
id pubmed-3059997
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher National Institute of Environmental Health Sciences
record_format MEDLINE/PubMed
spelling pubmed-30599972011-03-21 Exploring Indirect Sources of Human Exposure to Perfluoroalkyl Carboxylates (PFCAs): Evaluating Uptake, Elimination, and Biotransformation of Polyfluoroalkyl Phosphate Esters (PAPs) in the Rat D’eon, Jessica C. Mabury, Scott A. Environ Health Perspect Research BACKGROUND: Perfluorinated carboxylic acids (PFCAs) are ubiquitous in human sera worldwide. Biotransformation of the polyfluoroalkyl phosphate esters (PAPs) is a possible source of PFCA exposure, because PAPs are used in food-contact paper packaging and have been observed in human sera. OBJECTIVES: We determined pharmacokinetic parameters for the PAP monoesters (monoPAPs) and PAP diesters (diPAPs), as well as biotransformation yields to the PFCAs, using a rat model. METHODS: The animals were dosed intravenously or by oral gavage with a mixture of 4:2, 6:2, 8:2, and 10:2 monoPAP or diPAP chain lengths. Concentrations of the PAPs and PFCAs, as well as metabolic intermediates and phase II metabolites, were monitored over time in blood, urine, and feces. RESULTS: The diPAPs were bioavailable, with bioavailability decreasing as the chain length increased from 4 to 10 perfluorinated carbons. The monoPAPs were not absorbed from the gut; however, we found evidence to suggest phosphate-ester cleavage within the gut contents. We observed biotransformation to the PFCAs for both monoPAP and diPAP congeners. CONCLUSIONS: Using experimentally derived biotransformation yields, perfluorooctanoic acid (PFOA) sera concentrations were predicted from the biotransformation of 8:2 diPAP at concentrations observed in human serum. Because of the long human serum half-life of PFOA, biotransformation of diPAP even with low-level exposure could over time result in significant exposure to PFOA. Although humans are exposed directly to PFCAs in food and dust, the pharmacokinetic parameters determined here suggest that PAP exposure should be considered a significant indirect source of human PFCA contamination. National Institute of Environmental Health Sciences 2011-03 2010-11-08 /pmc/articles/PMC3059997/ /pubmed/21059488 http://dx.doi.org/10.1289/ehp.1002409 Text en http://creativecommons.org/publicdomain/mark/1.0/ Publication of EHP lies in the public domain and is therefore without copyright. All text from EHP may be reprinted freely. Use of materials published in EHP should be acknowledged (for example, ?Reproduced with permission from Environmental Health Perspectives?); pertinent reference information should be provided for the article from which the material was reproduced. Articles from EHP, especially the News section, may contain photographs or illustrations copyrighted by other commercial organizations or individuals that may not be used without obtaining prior approval from the holder of the copyright.
spellingShingle Research
D’eon, Jessica C.
Mabury, Scott A.
Exploring Indirect Sources of Human Exposure to Perfluoroalkyl Carboxylates (PFCAs): Evaluating Uptake, Elimination, and Biotransformation of Polyfluoroalkyl Phosphate Esters (PAPs) in the Rat
title Exploring Indirect Sources of Human Exposure to Perfluoroalkyl Carboxylates (PFCAs): Evaluating Uptake, Elimination, and Biotransformation of Polyfluoroalkyl Phosphate Esters (PAPs) in the Rat
title_full Exploring Indirect Sources of Human Exposure to Perfluoroalkyl Carboxylates (PFCAs): Evaluating Uptake, Elimination, and Biotransformation of Polyfluoroalkyl Phosphate Esters (PAPs) in the Rat
title_fullStr Exploring Indirect Sources of Human Exposure to Perfluoroalkyl Carboxylates (PFCAs): Evaluating Uptake, Elimination, and Biotransformation of Polyfluoroalkyl Phosphate Esters (PAPs) in the Rat
title_full_unstemmed Exploring Indirect Sources of Human Exposure to Perfluoroalkyl Carboxylates (PFCAs): Evaluating Uptake, Elimination, and Biotransformation of Polyfluoroalkyl Phosphate Esters (PAPs) in the Rat
title_short Exploring Indirect Sources of Human Exposure to Perfluoroalkyl Carboxylates (PFCAs): Evaluating Uptake, Elimination, and Biotransformation of Polyfluoroalkyl Phosphate Esters (PAPs) in the Rat
title_sort exploring indirect sources of human exposure to perfluoroalkyl carboxylates (pfcas): evaluating uptake, elimination, and biotransformation of polyfluoroalkyl phosphate esters (paps) in the rat
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059997/
https://www.ncbi.nlm.nih.gov/pubmed/21059488
http://dx.doi.org/10.1289/ehp.1002409
work_keys_str_mv AT deonjessicac exploringindirectsourcesofhumanexposuretoperfluoroalkylcarboxylatespfcasevaluatinguptakeeliminationandbiotransformationofpolyfluoroalkylphosphateesterspapsintherat
AT maburyscotta exploringindirectsourcesofhumanexposuretoperfluoroalkylcarboxylatespfcasevaluatinguptakeeliminationandbiotransformationofpolyfluoroalkylphosphateesterspapsintherat