Cargando…
Use of in Vitro HTS-Derived Concentration–Response Data as Biological Descriptors Improves the Accuracy of QSAR Models of in Vivo Toxicity
BACKGROUND: Quantitative high-throughput screening (qHTS) assays are increasingly being used to inform chemical hazard identification. Hundreds of chemicals have been tested in dozens of cell lines across extensive concentration ranges by the National Toxicology Program in collaboration with the Nat...
Autores principales: | Sedykh, Alexander, Zhu, Hao, Tang, Hao, Zhang, Liying, Richard, Ann, Rusyn, Ivan, Tropsha, Alexander |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
National Institute of Environmental Health Sciences
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3060000/ https://www.ncbi.nlm.nih.gov/pubmed/20980217 http://dx.doi.org/10.1289/ehp.1002476 |
Ejemplares similares
-
Use of Cell Viability Assay Data Improves the Prediction Accuracy of Conventional Quantitative Structure–Activity Relationship Models of Animal Carcinogenicity
por: Zhu, Hao, et al.
Publicado: (2008) -
A Novel Two-Step Hierarchical Quantitative Structure–Activity Relationship Modeling Work Flow for Predicting Acute Toxicity of Chemicals in Rodents
por: Zhu, Hao, et al.
Publicado: (2009) -
Conditional Toxicity Value (CTV) Predictor: An In Silico Approach for Generating Quantitative Risk Estimates for Chemicals
por: Wignall, Jessica A., et al.
Publicado: (2018) -
Building QSAR for HTS in vitro assays - a study for the prediction of Aryl hydrocarbon receptor activators
por: Abdelaziz, Ahmed M, et al.
Publicado: (2013) -
Prediction of the Toxicity of Binary Mixtures by QSAR Approach Using the Hypothetical Descriptors
por: Wang, Ting, et al.
Publicado: (2018)