Cargando…
Clustering More than Two Million Biomedical Publications: Comparing the Accuracies of Nine Text-Based Similarity Approaches
BACKGROUND: We investigate the accuracy of different similarity approaches for clustering over two million biomedical documents. Clustering large sets of text documents is important for a variety of information needs and applications such as collection management and navigation, summary and analysis...
Autores principales: | Boyack, Kevin W., Newman, David, Duhon, Russell J., Klavans, Richard, Patek, Michael, Biberstine, Joseph R., Schijvenaars, Bob, Skupin, André, Ma, Nianli, Börner, Katy |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3060097/ https://www.ncbi.nlm.nih.gov/pubmed/21437291 http://dx.doi.org/10.1371/journal.pone.0018029 |
Ejemplares similares
-
Design and Update of a Classification System: The UCSD Map of Science
por: Börner, Katy, et al.
Publicado: (2012) -
Visualizing the Topical Structure of the Medical Sciences: A Self-Organizing Map Approach
por: Skupin, André, et al.
Publicado: (2013) -
The Research Focus of Nations: Economic vs. Altruistic Motivations
por: Klavans, Richard, et al.
Publicado: (2017) -
Systematic Characterizations of Text Similarity in Full Text Biomedical Publications
por: Sun, Zhaohui, et al.
Publicado: (2010) -
A detailed open access model of the PubMed literature
por: Boyack, Kevin W., et al.
Publicado: (2020)