Cargando…

Evaluating markers in selected genes for association with functional longevity of dairy cattle

BACKGROUND: Longevity expressed as the number of days between birth and death is a trait of great importance for both human and animal populations. In our analysis we use dairy cattle to demonstrate how the association of Single Nucleotide Polymorphisms (SNPs) located within selected genes with long...

Descripción completa

Detalles Bibliográficos
Autores principales: Szyda, Joanna, Morek-Kopeć, Małgorzata, Komisarek, Jolanta, Żarnecki, Andrzej
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3061949/
https://www.ncbi.nlm.nih.gov/pubmed/21392379
http://dx.doi.org/10.1186/1471-2156-12-30
_version_ 1782200675344580608
author Szyda, Joanna
Morek-Kopeć, Małgorzata
Komisarek, Jolanta
Żarnecki, Andrzej
author_facet Szyda, Joanna
Morek-Kopeć, Małgorzata
Komisarek, Jolanta
Żarnecki, Andrzej
author_sort Szyda, Joanna
collection PubMed
description BACKGROUND: Longevity expressed as the number of days between birth and death is a trait of great importance for both human and animal populations. In our analysis we use dairy cattle to demonstrate how the association of Single Nucleotide Polymorphisms (SNPs) located within selected genes with longevity can be modeled. Such an approach can be extended to any genotyped population with time to endpoint information available. Our study is focused on selected genes in order to answer the question whether genes, known to be involved into the physiological determination of milk production, also influence individual's survival. RESULTS: Generally, the highest risk differences among animals with different genotypes are observed for polymorphisms located within the leptin gene. The polymorphism with a highest effect on functional longevity is LEP-R25C, for which the relative risk of culling for cows with genotype CC is 3.14 times higher than for the heterozygous animals. Apart from LEP-R25C, also FF homozygotes at the LEP-Y7F substitution attribute 3.64 times higher risk of culling than the YY homozygotes and VV homozygotes at LEP-A80V have 1.83 times higher risk of culling than AA homozygotes. Differences in risks between genotypes of polymorphisms within the other genes (the butyrophilin subfamily 1 member A1 gene, BTN1A1; the acyl-CoA:diacylglycerol acyltransferase 1 gene, DGAT1; the leptin receptor gene, LEPR; the ATP-binding cassette sub-family G member 2, ABCG2) are much smaller. CONCLUSIONS: Our results indicate association between LEP and longevity and are very well supported by results of other studies related to dairy cattle. In view of the growing importance of functional traits in dairy cattle, LEP polymorphisms should be considered as markers supporting selection decisions. Furthermore, since the relationship between both LEP polymorphism and its protein product with longevity in humans is well documented, with our result we were able to demonstrate that livestock with its detailed records of family structure, genetic, and environmental factors as well as extensive trait recording can be a good model organism for research aspects related to humans.
format Text
id pubmed-3061949
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-30619492011-03-22 Evaluating markers in selected genes for association with functional longevity of dairy cattle Szyda, Joanna Morek-Kopeć, Małgorzata Komisarek, Jolanta Żarnecki, Andrzej BMC Genet Research Article BACKGROUND: Longevity expressed as the number of days between birth and death is a trait of great importance for both human and animal populations. In our analysis we use dairy cattle to demonstrate how the association of Single Nucleotide Polymorphisms (SNPs) located within selected genes with longevity can be modeled. Such an approach can be extended to any genotyped population with time to endpoint information available. Our study is focused on selected genes in order to answer the question whether genes, known to be involved into the physiological determination of milk production, also influence individual's survival. RESULTS: Generally, the highest risk differences among animals with different genotypes are observed for polymorphisms located within the leptin gene. The polymorphism with a highest effect on functional longevity is LEP-R25C, for which the relative risk of culling for cows with genotype CC is 3.14 times higher than for the heterozygous animals. Apart from LEP-R25C, also FF homozygotes at the LEP-Y7F substitution attribute 3.64 times higher risk of culling than the YY homozygotes and VV homozygotes at LEP-A80V have 1.83 times higher risk of culling than AA homozygotes. Differences in risks between genotypes of polymorphisms within the other genes (the butyrophilin subfamily 1 member A1 gene, BTN1A1; the acyl-CoA:diacylglycerol acyltransferase 1 gene, DGAT1; the leptin receptor gene, LEPR; the ATP-binding cassette sub-family G member 2, ABCG2) are much smaller. CONCLUSIONS: Our results indicate association between LEP and longevity and are very well supported by results of other studies related to dairy cattle. In view of the growing importance of functional traits in dairy cattle, LEP polymorphisms should be considered as markers supporting selection decisions. Furthermore, since the relationship between both LEP polymorphism and its protein product with longevity in humans is well documented, with our result we were able to demonstrate that livestock with its detailed records of family structure, genetic, and environmental factors as well as extensive trait recording can be a good model organism for research aspects related to humans. BioMed Central 2011-03-10 /pmc/articles/PMC3061949/ /pubmed/21392379 http://dx.doi.org/10.1186/1471-2156-12-30 Text en Copyright ©2011 Szyda et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Szyda, Joanna
Morek-Kopeć, Małgorzata
Komisarek, Jolanta
Żarnecki, Andrzej
Evaluating markers in selected genes for association with functional longevity of dairy cattle
title Evaluating markers in selected genes for association with functional longevity of dairy cattle
title_full Evaluating markers in selected genes for association with functional longevity of dairy cattle
title_fullStr Evaluating markers in selected genes for association with functional longevity of dairy cattle
title_full_unstemmed Evaluating markers in selected genes for association with functional longevity of dairy cattle
title_short Evaluating markers in selected genes for association with functional longevity of dairy cattle
title_sort evaluating markers in selected genes for association with functional longevity of dairy cattle
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3061949/
https://www.ncbi.nlm.nih.gov/pubmed/21392379
http://dx.doi.org/10.1186/1471-2156-12-30
work_keys_str_mv AT szydajoanna evaluatingmarkersinselectedgenesforassociationwithfunctionallongevityofdairycattle
AT morekkopecmałgorzata evaluatingmarkersinselectedgenesforassociationwithfunctionallongevityofdairycattle
AT komisarekjolanta evaluatingmarkersinselectedgenesforassociationwithfunctionallongevityofdairycattle
AT zarneckiandrzej evaluatingmarkersinselectedgenesforassociationwithfunctionallongevityofdairycattle