Cargando…
The neurogenetics of exploration and exploitation: Prefrontal and striatal dopaminergic components
The basal ganglia support learning to exploit decisions that have yielded positive outcomes in the past. In contrast, limited evidence implicates the prefrontal cortex for making strategic exploratory decisions when the magnitude of potential outcomes is unknown. Here we examine neurogenetic contrib...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3062477/ https://www.ncbi.nlm.nih.gov/pubmed/19620978 http://dx.doi.org/10.1038/nn.2342 |
Sumario: | The basal ganglia support learning to exploit decisions that have yielded positive outcomes in the past. In contrast, limited evidence implicates the prefrontal cortex for making strategic exploratory decisions when the magnitude of potential outcomes is unknown. Here we examine neurogenetic contributions to individual differences in these distinct aspects of motivated human behavior, employing a temporal decision making task and computational analysis. We show that genes controlling striatal dopamine function (DARPP-32 and DRD2) are associated with exploitative learning to incrementally adjust response times as a function of positive and negative decision outcomes. In contrast, a gene primarily controlling prefrontal dopamine function (COMT) is associated with a particular type of “directed exploration”, in which exploratory decisions are made in proportion to Bayesian uncertainty about whether other choices might produce outcomes that are better than the status quo. Quantitative model fits reveal that genetic factors modulate independent parameters of a reinforcement learning system. |
---|