Cargando…
On Spike-Timing-Dependent-Plasticity, Memristive Devices, and Building a Self-Learning Visual Cortex
In this paper we present a very exciting overlap between emergent nanotechnology and neuroscience, which has been discovered by neuromorphic engineers. Specifically, we are linking one type of memristor nanotechnology devices to the biological synaptic update rule known as spike-time-dependent-plast...
Autores principales: | Zamarreño-Ramos, Carlos, Camuñas-Mesa, Luis A., Pérez-Carrasco, Jose A., Masquelier, Timothée, Serrano-Gotarredona, Teresa, Linares-Barranco, Bernabé |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3062969/ https://www.ncbi.nlm.nih.gov/pubmed/21442012 http://dx.doi.org/10.3389/fnins.2011.00026 |
Ejemplares similares
-
Plasticity in memristive devices for spiking neural networks
por: Saïghi, Sylvain, et al.
Publicado: (2015) -
Neuromorphic Spiking Neural Networks and Their Memristor-CMOS Hardware Implementations
por: Camuñas-Mesa, Luis A., et al.
Publicado: (2019) -
Comparison between Frame-Constrained Fix-Pixel-Value and Frame-Free Spiking-Dynamic-Pixel ConvNets for Visual Processing
por: Farabet, Clément, et al.
Publicado: (2012) -
STDP and STDP variations with memristors for spiking neuromorphic learning systems
por: Serrano-Gotarredona, T., et al.
Publicado: (2013) -
A Configurable Event-Driven Convolutional Node with Rate Saturation Mechanism for Modular ConvNet Systems Implementation
por: Camuñas-Mesa, Luis A., et al.
Publicado: (2018)