Cargando…
Microbleed Detection Using Automated Segmentation (MIDAS): A New Method Applicable to Standard Clinical MR Images
BACKGROUND: Cerebral microbleeds, visible on gradient-recalled echo (GRE) T2* MRI, have generated increasing interest as an imaging marker of small vessel diseases, with relevance for intracerebral bleeding risk or brain dysfunction. METHODOLOGY/PRINCIPAL FINDINGS: Manual rating methods have limited...
Autores principales: | Seghier, Mohamed L., Kolanko, Magdalena A., Leff, Alexander P., Jäger, Hans R., Gregoire, Simone M., Werring, David J. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3063172/ https://www.ncbi.nlm.nih.gov/pubmed/21448456 http://dx.doi.org/10.1371/journal.pone.0017547 |
Ejemplares similares
-
Semi-Automated Detection of Cerebral Microbleeds on 3.0 T MR Images
por: Kuijf, Hugo J., et al.
Publicado: (2013) -
Automated identification of brain tumors from single MR images based on segmentation with refined patient-specific priors
por: Sanjuán, Ana, et al.
Publicado: (2013) -
Using transfer learning for automated microbleed segmentation
por: Dadar, Mahsa, et al.
Publicado: (2022) -
Automated detection of cerebral microbleeds on MR images using knowledge distillation framework
por: Sundaresan, Vaanathi, et al.
Publicado: (2023) -
Automated detection of cerebral microbleeds in MR images: A two-stage deep learning approach
por: Al-masni, Mohammed A., et al.
Publicado: (2020)