Cargando…

Towards the prediction of protein interaction partners using physical docking

Deciphering the whole network of protein interactions for a given proteome (‘interactome') is the goal of many experimental and computational efforts in Systems Biology. Separately the prediction of the structure of protein complexes by docking methods is a well-established scientific area. To...

Descripción completa

Detalles Bibliográficos
Autores principales: Wass, Mark Nicholas, Fuentes, Gloria, Pons, Carles, Pazos, Florencio, Valencia, Alfonso
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3063693/
https://www.ncbi.nlm.nih.gov/pubmed/21326236
http://dx.doi.org/10.1038/msb.2011.3
Descripción
Sumario:Deciphering the whole network of protein interactions for a given proteome (‘interactome') is the goal of many experimental and computational efforts in Systems Biology. Separately the prediction of the structure of protein complexes by docking methods is a well-established scientific area. To date, docking programs have not been used to predict interaction partners. We provide a proof of principle for such an approach. Using a set of protein complexes representing known interactors in their unbound form, we show that a standard docking program can distinguish the true interactors from a background of 922 non-redundant potential interactors. We additionally show that true interactions can be distinguished from non-likely interacting proteins within the same structural family. Our approach may be put in the context of the proposed ‘funnel-energy model'; the docking algorithm may not find the native complex, but it distinguishes binding partners because of the higher probability of favourable models compared with a collection of non-binders. The potential exists to develop this proof of principle into new approaches for predicting interaction partners and reconstructing biological networks.