Cargando…
SAINT: Probabilistic Scoring of Affinity Purification - Mass Spectrometry Data
We present SAINT (Significance Analysis of INTeractome), a computational tool that assigns confidence scores to protein-protein interaction data generated using affinity-purification coupled to mass spectrometry (AP-MS). The method utilizes label-free quantitative data and constructs separate distri...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3064265/ https://www.ncbi.nlm.nih.gov/pubmed/21131968 http://dx.doi.org/10.1038/nmeth.1541 |
Sumario: | We present SAINT (Significance Analysis of INTeractome), a computational tool that assigns confidence scores to protein-protein interaction data generated using affinity-purification coupled to mass spectrometry (AP-MS). The method utilizes label-free quantitative data and constructs separate distributions for true and false interactions to derive the probability of a bona fide protein-protein interaction. We demonstrate that SAINT is applicable to data of different scales and protein connectivity and allows for the transparent analysis of AP-MS data. |
---|