Cargando…

SAINT: Probabilistic Scoring of Affinity Purification - Mass Spectrometry Data

We present SAINT (Significance Analysis of INTeractome), a computational tool that assigns confidence scores to protein-protein interaction data generated using affinity-purification coupled to mass spectrometry (AP-MS). The method utilizes label-free quantitative data and constructs separate distri...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Hyungwon, Larsen, Brett, Lin, Zhen-Yuan, Breitkreutz, Ashton, Mellacheruvu, Dattatreya, Fermin, Damian, Qin, Zhaohui S., Tyers, Mike, Gingras, Anne-Claude, Nesvizhskii, Alexey I.
Formato: Texto
Lenguaje:English
Publicado: 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3064265/
https://www.ncbi.nlm.nih.gov/pubmed/21131968
http://dx.doi.org/10.1038/nmeth.1541
Descripción
Sumario:We present SAINT (Significance Analysis of INTeractome), a computational tool that assigns confidence scores to protein-protein interaction data generated using affinity-purification coupled to mass spectrometry (AP-MS). The method utilizes label-free quantitative data and constructs separate distributions for true and false interactions to derive the probability of a bona fide protein-protein interaction. We demonstrate that SAINT is applicable to data of different scales and protein connectivity and allows for the transparent analysis of AP-MS data.