Cargando…
Reducing False Alarms of Intensive Care Online-Monitoring Systems: An Evaluation of Two Signal Extraction Algorithms
Online-monitoring systems in intensive care are affected by a high rate of false threshold alarms. These are caused by irrelevant noise and outliers in the measured time series data. The high false alarm rates can be lowered by separating relevant signals from noise and outliers online, in such a wa...
Autores principales: | Borowski, M., Siebig, S., Wrede, C., Imhoff, M. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3064994/ https://www.ncbi.nlm.nih.gov/pubmed/21461385 http://dx.doi.org/10.1155/2011/143480 |
Ejemplares similares
-
Robust regression methods for intensive care monitoring
por: Imhoff, M, et al.
Publicado: (2007) -
Alarms in the intensive care unit: how can the number of false alarms be reduced?
por: Chambrin, Marie-Christine
Publicado: (2001) -
Intra-observer and inter-observer variability of clinical annotations of monitoring data
por: Imhoff, M, et al.
Publicado: (2007) -
False arrhythmia alarms can be reduced by algorithm improvements while the magnitude of the reduction is affected by alarm settings
por: Kaski, M, et al.
Publicado: (2015) -
Detecting False Alarms by Analyzing Alarm-Context Information: Algorithm Development and Validation
por: Fernandes, Chrystinne, et al.
Publicado: (2020)