Cargando…
Microtubule stabilization in vivo by nucleation-incompetent γ-tubulin complex
Although the fission yeast Schizosaccharomyces pombe contains many of the γ-tubulin ring complex (γ-TuRC)-specific proteins of the γ-tubulin complex (γ-TuC), several questions about the organizational state and function of the fission yeast γ-TuC in vivo remain unresolved. Using 3×GFP-tagged γ-TuRC-...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Company of Biologists
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065382/ https://www.ncbi.nlm.nih.gov/pubmed/21444751 http://dx.doi.org/10.1242/jcs.083741 |
Sumario: | Although the fission yeast Schizosaccharomyces pombe contains many of the γ-tubulin ring complex (γ-TuRC)-specific proteins of the γ-tubulin complex (γ-TuC), several questions about the organizational state and function of the fission yeast γ-TuC in vivo remain unresolved. Using 3×GFP-tagged γ-TuRC-specific proteins, we show here that γ-TuRC-specific proteins are present at all microtubule organizing centers in fission yeast and that association of γ-TuRC-specific proteins with the γ-tubulin small complex (γ-TuSC) does not depend on Mto1, which is a key regulator of the γ-TuC. Through sensitive imaging in mto1Δ mutants, in which cytoplasmic microtubule nucleation is abolished, we unexpectedly found that γ-TuC incapable of nucleating microtubules can nevertheless associate with microtubule minus-ends in vivo. The presence of γ-TuC at microtubule ends is independent of γ-TuRC-specific proteins and strongly correlates with the stability of microtubule ends. Strikingly, microtubule bundles lacking γ-TuC at microtubule ends undergo extensive treadmilling in vivo, apparently induced by geometrical constraints on plus-end growth. Our results indicate that microtubule stabilization by the γ-TuC, independently of its nucleation function, is important for maintaining the organization and dynamic behavior of microtubule arrays in vivo. |
---|