Cargando…
A Computational Framework Discovers New Copy Number Variants with Functional Importance
Structural variants which cause changes in copy numbers constitute an important component of genomic variability. They account for 0.7% of genomic differences in two individual genomes, of which copy number variants (CNVs) are the largest component. A recent population-based CNV study revealed the n...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3066184/ https://www.ncbi.nlm.nih.gov/pubmed/21479260 http://dx.doi.org/10.1371/journal.pone.0017539 |
_version_ | 1782201055755370496 |
---|---|
author | Banerjee, Samprit Oldridge, Derek Poptsova, Maria Hussain, Wasay M. Chakravarty, Dimple Demichelis, Francesca |
author_facet | Banerjee, Samprit Oldridge, Derek Poptsova, Maria Hussain, Wasay M. Chakravarty, Dimple Demichelis, Francesca |
author_sort | Banerjee, Samprit |
collection | PubMed |
description | Structural variants which cause changes in copy numbers constitute an important component of genomic variability. They account for 0.7% of genomic differences in two individual genomes, of which copy number variants (CNVs) are the largest component. A recent population-based CNV study revealed the need of better characterization of CNVs, especially the small ones (<500 bp).We propose a three step computational framework (Identification of germline Changes in Copy Number or IgC2N) to discover and genotype germline CNVs. First, we detect candidate CNV loci by combining information across multiple samples without imposing restrictions to the number of coverage markers or to the variant size. Secondly, we fine tune the detection of rare variants and infer the putative copy number classes for each locus. Last, for each variant we combine the relative distance between consecutive copy number classes with genetic information in a novel attempt to estimate the reference model bias. This computational approach is applied to genome-wide data from 1250 HapMap individuals. Novel variants were discovered and characterized in terms of size, minor allele frequency, type of polymorphism (gains, losses or both), and mechanism of formation. Using data generated for a subset of individuals by a 42 million marker platform, we validated the majority of the variants with the highest validation rate (66.7%) was for variants of size larger than 1 kb. Finally, we queried transcriptomic data from 129 individuals determined by RNA-sequencing as further validation and to assess the functional role of the new variants. We investigated the possible enrichment for variant's regulatory effect and found that smaller variants (<1 Kb) are more likely to regulate gene transcript than larger variants (p-value = 2.04e-08). Our results support the validity of the computational framework to detect novel variants relevant to disease susceptibility studies and provide evidence of the importance of genetic variants in regulatory network studies. |
format | Text |
id | pubmed-3066184 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-30661842011-04-08 A Computational Framework Discovers New Copy Number Variants with Functional Importance Banerjee, Samprit Oldridge, Derek Poptsova, Maria Hussain, Wasay M. Chakravarty, Dimple Demichelis, Francesca PLoS One Research Article Structural variants which cause changes in copy numbers constitute an important component of genomic variability. They account for 0.7% of genomic differences in two individual genomes, of which copy number variants (CNVs) are the largest component. A recent population-based CNV study revealed the need of better characterization of CNVs, especially the small ones (<500 bp).We propose a three step computational framework (Identification of germline Changes in Copy Number or IgC2N) to discover and genotype germline CNVs. First, we detect candidate CNV loci by combining information across multiple samples without imposing restrictions to the number of coverage markers or to the variant size. Secondly, we fine tune the detection of rare variants and infer the putative copy number classes for each locus. Last, for each variant we combine the relative distance between consecutive copy number classes with genetic information in a novel attempt to estimate the reference model bias. This computational approach is applied to genome-wide data from 1250 HapMap individuals. Novel variants were discovered and characterized in terms of size, minor allele frequency, type of polymorphism (gains, losses or both), and mechanism of formation. Using data generated for a subset of individuals by a 42 million marker platform, we validated the majority of the variants with the highest validation rate (66.7%) was for variants of size larger than 1 kb. Finally, we queried transcriptomic data from 129 individuals determined by RNA-sequencing as further validation and to assess the functional role of the new variants. We investigated the possible enrichment for variant's regulatory effect and found that smaller variants (<1 Kb) are more likely to regulate gene transcript than larger variants (p-value = 2.04e-08). Our results support the validity of the computational framework to detect novel variants relevant to disease susceptibility studies and provide evidence of the importance of genetic variants in regulatory network studies. Public Library of Science 2011-03-29 /pmc/articles/PMC3066184/ /pubmed/21479260 http://dx.doi.org/10.1371/journal.pone.0017539 Text en Banerjee et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Banerjee, Samprit Oldridge, Derek Poptsova, Maria Hussain, Wasay M. Chakravarty, Dimple Demichelis, Francesca A Computational Framework Discovers New Copy Number Variants with Functional Importance |
title | A Computational Framework Discovers New Copy Number Variants with Functional Importance |
title_full | A Computational Framework Discovers New Copy Number Variants with Functional Importance |
title_fullStr | A Computational Framework Discovers New Copy Number Variants with Functional Importance |
title_full_unstemmed | A Computational Framework Discovers New Copy Number Variants with Functional Importance |
title_short | A Computational Framework Discovers New Copy Number Variants with Functional Importance |
title_sort | computational framework discovers new copy number variants with functional importance |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3066184/ https://www.ncbi.nlm.nih.gov/pubmed/21479260 http://dx.doi.org/10.1371/journal.pone.0017539 |
work_keys_str_mv | AT banerjeesamprit acomputationalframeworkdiscoversnewcopynumbervariantswithfunctionalimportance AT oldridgederek acomputationalframeworkdiscoversnewcopynumbervariantswithfunctionalimportance AT poptsovamaria acomputationalframeworkdiscoversnewcopynumbervariantswithfunctionalimportance AT hussainwasaym acomputationalframeworkdiscoversnewcopynumbervariantswithfunctionalimportance AT chakravartydimple acomputationalframeworkdiscoversnewcopynumbervariantswithfunctionalimportance AT demichelisfrancesca acomputationalframeworkdiscoversnewcopynumbervariantswithfunctionalimportance AT banerjeesamprit computationalframeworkdiscoversnewcopynumbervariantswithfunctionalimportance AT oldridgederek computationalframeworkdiscoversnewcopynumbervariantswithfunctionalimportance AT poptsovamaria computationalframeworkdiscoversnewcopynumbervariantswithfunctionalimportance AT hussainwasaym computationalframeworkdiscoversnewcopynumbervariantswithfunctionalimportance AT chakravartydimple computationalframeworkdiscoversnewcopynumbervariantswithfunctionalimportance AT demichelisfrancesca computationalframeworkdiscoversnewcopynumbervariantswithfunctionalimportance |