Cargando…

Integrated Analysis of Multiple Microarray Datasets Identifies a Reproducible Survival Predictor in Ovarian Cancer

BACKGROUND: Public data integration may help overcome challenges in clinical implementation of microarray profiles. We integrated several ovarian cancer datasets to identify a reproducible predictor of survival. METHODOLOGY/PRINCIPAL FINDINGS: Four microarray datasets from different institutions com...

Descripción completa

Detalles Bibliográficos
Autores principales: Konstantinopoulos, Panagiotis A., Cannistra, Stephen A., Fountzilas, Helen, Culhane, Aedin, Pillay, Kamana, Rueda, Bo, Cramer, Daniel, Seiden, Michael, Birrer, Michael, Coukos, George, Zhang, Lin, Quackenbush, John, Spentzos, Dimitrios
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3066217/
https://www.ncbi.nlm.nih.gov/pubmed/21479231
http://dx.doi.org/10.1371/journal.pone.0018202
Descripción
Sumario:BACKGROUND: Public data integration may help overcome challenges in clinical implementation of microarray profiles. We integrated several ovarian cancer datasets to identify a reproducible predictor of survival. METHODOLOGY/PRINCIPAL FINDINGS: Four microarray datasets from different institutions comprising 265 advanced stage tumors were uniformly reprocessed into a single training dataset, also adjusting for inter-laboratory variation (“batch-effect”). Supervised principal component survival analysis was employed to identify prognostic models. Models were independently validated in a 61-patient cohort using a custom array genechip and a publicly available 229-array dataset. Molecular correspondence of high- and low-risk outcome groups between training and validation datasets was demonstrated using Subclass Mapping. Previously established molecular phenotypes in the 2(nd) validation set were correlated with high and low-risk outcome groups. Functional representational and pathway analysis was used to explore gene networks associated with high and low risk phenotypes. A 19-gene model showed optimal performance in the training set (median OS 31 and 78 months, p<0.01), 1(st) validation set (median OS 32 months versus not-yet-reached, p = 0.026) and 2(nd) validation set (median OS 43 versus 61 months, p = 0.013) maintaining independent prognostic power in multivariate analysis. There was strong molecular correspondence of the respective high- and low-risk tumors between training and 1(st) validation set. Low and high-risk tumors were enriched for favorable and unfavorable molecular subtypes and pathways, previously defined in the public 2(nd) validation set. CONCLUSIONS/SIGNIFICANCE: Integration of previously generated cancer microarray datasets may lead to robust and widely applicable survival predictors. These predictors are not simply a compilation of prognostic genes but appear to track true molecular phenotypes of good- and poor-outcome.