Cargando…

Cloning and Characterization of the Antiviral Activity of Feline Tetherin/BST-2

Human Tetherin/BST-2 has recently been identified as a cellular antiviral factor that blocks the release of various enveloped viruses. In this study, we cloned a cDNA fragment encoding a feline homolog of Tetherin/BST-2 and characterized the protein product. The degree of amino acid sequence identit...

Descripción completa

Detalles Bibliográficos
Autores principales: Fukuma, Aiko, Abe, Masumi, Morikawa, Yuko, Miyazawa, Takayuki, Yasuda, Jiro
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3066219/
https://www.ncbi.nlm.nih.gov/pubmed/21479233
http://dx.doi.org/10.1371/journal.pone.0018247
Descripción
Sumario:Human Tetherin/BST-2 has recently been identified as a cellular antiviral factor that blocks the release of various enveloped viruses. In this study, we cloned a cDNA fragment encoding a feline homolog of Tetherin/BST-2 and characterized the protein product. The degree of amino acid sequence identity between human Tetherin/BST-2 and the feline homolog was 44.4%. Similar to human Tetherin/BST-2, the expression of feline Tetherin/BST-2 mRNA was inducible by type I interferon (IFN). Exogenous expression of feline Tetherin/BST-2 efficiently inhibited the release of feline endogenous retrovirus RD-114. The extracellular domain of feline Tetherin/BST-2 has two putative N-linked glycosylation sites, N79 and N119. Complete loss of N-linked glycosylation by introduction of mutations into both sites resulted in almost complete abolition of its antiviral activity. In addition, feline Tetherin/BST-2 was insensitive to antagonism by HIV-1 Vpu, although the antiviral activity of human Tetherin/BST-2 was antagonized by HIV-1 Vpu. Our data suggest that feline Tetherin/BST-2 functions as a part of IFN-induced innate immunity against virus infection and that the induction of feline Tetherin/BST-2 in vivo may be effective as a novel antiviral strategy for viral infection.