Cargando…
Managing Polyploidy in Ex Situ Conservation Genetics: The Case of the Critically Endangered Adriatic Sturgeon (Acipenser naccarii)
While the current expansion of conservation genetics enables to address more efficiently the management of threatened species, alternative methods for genetic relatedness data analysis in polyploid species are necessary. Within this framework, we present a standardized and simple protocol specifical...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3066226/ https://www.ncbi.nlm.nih.gov/pubmed/21483472 http://dx.doi.org/10.1371/journal.pone.0018249 |
Sumario: | While the current expansion of conservation genetics enables to address more efficiently the management of threatened species, alternative methods for genetic relatedness data analysis in polyploid species are necessary. Within this framework, we present a standardized and simple protocol specifically designed for polyploid species that can facilitate management of genetic diversity, as exemplified by the ex situ conservation program for the tetraploid Adriatic sturgeon Acipenser naccarii. A critically endangered endemic species of the Adriatic Sea tributaries, its persistence is strictly linked to the ex situ conservation of a single captive broodstock currently decimated to about 25 individuals, which represents the last remaining population of Adriatic sturgeon of certain wild origin. The genetic variability of three F1 broodstocks available as future breeders was estimated based on mitochondrial and microsatellite information and compared with the variability of the parental generation. Genetic data showed that the F1 stocks have only retained part of the genetic variation present in the original stock due to the few parent pairs used as founders. This prompts for the urgent improvement of the current F1 stocks by incorporating new founders that better represent the genetic diversity available. Following parental allocation based on band sharing values, we set up a user-friendly tool for selection of candidate breeders according to relatedness between all possible parent-pairs that secures the use of non-related individuals. The approach developed here could also be applied to other endangered tetraploid sturgeon species overexploited for caviar production, particularly in regions lacking proper infrastructure and/or expertise. |
---|