Cargando…
Hierarchical Alignment and Full Resolution Pattern Recognition of 2D NMR Spectra: Application to Nematode Chemical Ecology
[Image: see text] Nuclear magnetic resonance (NMR) is the most widely used nondestructive technique in analytical chemistry. In recent years, it has been applied to metabolic profiling due to its high reproducibility, capacity for relative and absolute quantification, atomic resolution, and ability...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2011
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3066641/ https://www.ncbi.nlm.nih.gov/pubmed/21314130 http://dx.doi.org/10.1021/ac102724x |
Sumario: | [Image: see text] Nuclear magnetic resonance (NMR) is the most widely used nondestructive technique in analytical chemistry. In recent years, it has been applied to metabolic profiling due to its high reproducibility, capacity for relative and absolute quantification, atomic resolution, and ability to detect a broad range of compounds in an untargeted manner. While one-dimensional (1D) (1)H NMR experiments are popular in metabolic profiling due to their simplicity and fast acquisition times, two-dimensional (2D) NMR spectra offer increased spectral resolution as well as atomic correlations, which aid in the assignment of known small molecules and the structural elucidation of novel compounds. Given the small number of statistical analysis methods for 2D NMR spectra, we developed a new approach for the analysis, information recovery, and display of 2D NMR spectral data. We present a native 2D peak alignment algorithm we term HATS, for hierarchical alignment of two-dimensional spectra, enabling pattern recognition (PR) using full-resolution spectra. Principle component analysis (PCA) and partial least squares (PLS) regression of full resolution total correlation spectroscopy (TOCSY) spectra greatly aid the assignment and interpretation of statistical pattern recognition results by producing back-scaled loading plots that look like traditional TOCSY spectra but incorporate qualitative and quantitative biological information of the resonances. The HATS-PR methodology is demonstrated here using multiple 2D TOCSY spectra of the exudates from two nematode species: Pristionchus pacificus and Panagrellus redivivus. We show the utility of this integrated approach with the rapid, semiautomated assignment of small molecules differentiating the two species and the identification of spectral regions suggesting the presence of species-specific compounds. These results demonstrate that the combination of 2D NMR spectra with full-resolution statistical analysis provides a platform for chemical and biological studies in cellular biochemistry, metabolomics, and chemical ecology. |
---|