Cargando…

Parallel biocomputing

BACKGROUND: With the advent of high throughput genomics and high-resolution imaging techniques, there is a growing necessity in biology and medicine for parallel computing, and with the low cost of computing, it is now cost-effective for even small labs or individuals to build their own personal com...

Descripción completa

Detalles Bibliográficos
Autores principales: Kompass, Kenneth S, Hoffmann, Thomas J, Witte, John S
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3068083/
https://www.ncbi.nlm.nih.gov/pubmed/21418580
http://dx.doi.org/10.1186/1751-0473-6-4
Descripción
Sumario:BACKGROUND: With the advent of high throughput genomics and high-resolution imaging techniques, there is a growing necessity in biology and medicine for parallel computing, and with the low cost of computing, it is now cost-effective for even small labs or individuals to build their own personal computation cluster. METHODS: Here we briefly describe how to use commodity hardware to build a low-cost, high-performance compute cluster, and provide an in-depth example and sample code for parallel execution of R jobs using MOSIX, a mature extension of the Linux kernel for parallel computing. A similar process can be used with other cluster platform software. RESULTS: As a statistical genetics example, we use our cluster to run a simulated eQTL experiment. Because eQTL is computationally intensive, and is conceptually easy to parallelize, like many statistics/genetics applications, parallel execution with MOSIX gives a linear speedup in analysis time with little additional effort. CONCLUSIONS: We have used MOSIX to run a wide variety of software programs in parallel with good results. The limitations and benefits of using MOSIX are discussed and compared to other platforms.