Cargando…
Parallel biocomputing
BACKGROUND: With the advent of high throughput genomics and high-resolution imaging techniques, there is a growing necessity in biology and medicine for parallel computing, and with the low cost of computing, it is now cost-effective for even small labs or individuals to build their own personal com...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3068083/ https://www.ncbi.nlm.nih.gov/pubmed/21418580 http://dx.doi.org/10.1186/1751-0473-6-4 |
Sumario: | BACKGROUND: With the advent of high throughput genomics and high-resolution imaging techniques, there is a growing necessity in biology and medicine for parallel computing, and with the low cost of computing, it is now cost-effective for even small labs or individuals to build their own personal computation cluster. METHODS: Here we briefly describe how to use commodity hardware to build a low-cost, high-performance compute cluster, and provide an in-depth example and sample code for parallel execution of R jobs using MOSIX, a mature extension of the Linux kernel for parallel computing. A similar process can be used with other cluster platform software. RESULTS: As a statistical genetics example, we use our cluster to run a simulated eQTL experiment. Because eQTL is computationally intensive, and is conceptually easy to parallelize, like many statistics/genetics applications, parallel execution with MOSIX gives a linear speedup in analysis time with little additional effort. CONCLUSIONS: We have used MOSIX to run a wide variety of software programs in parallel with good results. The limitations and benefits of using MOSIX are discussed and compared to other platforms. |
---|