Cargando…
Interaction of Rickettsia felis with histone H2B facilitates the infection of a tick cell line
Haematophagous arthropods are the primary vectors in the transmission of Rickettsia, yet the molecular mechanisms mediating the rickettsial infection of arthropods remain elusive. This study utilized a biotinylated protein pull-down assay together with LC-MS/MS to identify interaction between Ixodes...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Microbiology Society
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3068691/ https://www.ncbi.nlm.nih.gov/pubmed/20558510 http://dx.doi.org/10.1099/mic.0.041400-0 |
Sumario: | Haematophagous arthropods are the primary vectors in the transmission of Rickettsia, yet the molecular mechanisms mediating the rickettsial infection of arthropods remain elusive. This study utilized a biotinylated protein pull-down assay together with LC-MS/MS to identify interaction between Ixodes scapularis histone H2B and Rickettsia felis. Co-immunoprecipitation of histone with rickettsial cell lysate demonstrated the association of H2B with R. felis proteins, including outer-membrane protein B (OmpB), a major rickettsial adhesin molecule. The rickettsial infection of tick ISE6 cells was reduced by approximately 25 % via RNA-mediated H2B-depletion or enzymic treatment of histones. The interaction of H2B with the rickettsial adhesin OmpB suggests a role for H2B in mediating R. felis internalization into ISE6 cells. |
---|