Cargando…
A combined long-range phasing and long haplotype imputation method to impute phase for SNP genotypes
BACKGROUND: Knowing the phase of marker genotype data can be useful in genome-wide association studies, because it makes it possible to use analysis frameworks that account for identity by descent or parent of origin of alleles and it can lead to a large increase in data quantities via genotype or s...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3068938/ https://www.ncbi.nlm.nih.gov/pubmed/21388557 http://dx.doi.org/10.1186/1297-9686-43-12 |
_version_ | 1782201286715768832 |
---|---|
author | Hickey, John M Kinghorn, Brian P Tier, Bruce Wilson, James F Dunstan, Neil van der Werf, Julius HJ |
author_facet | Hickey, John M Kinghorn, Brian P Tier, Bruce Wilson, James F Dunstan, Neil van der Werf, Julius HJ |
author_sort | Hickey, John M |
collection | PubMed |
description | BACKGROUND: Knowing the phase of marker genotype data can be useful in genome-wide association studies, because it makes it possible to use analysis frameworks that account for identity by descent or parent of origin of alleles and it can lead to a large increase in data quantities via genotype or sequence imputation. Long-range phasing and haplotype library imputation constitute a fast and accurate method to impute phase for SNP data. METHODS: A long-range phasing and haplotype library imputation algorithm was developed. It combines information from surrogate parents and long haplotypes to resolve phase in a manner that is not dependent on the family structure of a dataset or on the presence of pedigree information. RESULTS: The algorithm performed well in both simulated and real livestock and human datasets in terms of both phasing accuracy and computation efficiency. The percentage of alleles that could be phased in both simulated and real datasets of varying size generally exceeded 98% while the percentage of alleles incorrectly phased in simulated data was generally less than 0.5%. The accuracy of phasing was affected by dataset size, with lower accuracy for dataset sizes less than 1000, but was not affected by effective population size, family data structure, presence or absence of pedigree information, and SNP density. The method was computationally fast. In comparison to a commonly used statistical method (fastPHASE), the current method made about 8% less phasing mistakes and ran about 26 times faster for a small dataset. For larger datasets, the differences in computational time are expected to be even greater. A computer program implementing these methods has been made available. CONCLUSIONS: The algorithm and software developed in this study make feasible the routine phasing of high-density SNP chips in large datasets. |
format | Text |
id | pubmed-3068938 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-30689382011-04-01 A combined long-range phasing and long haplotype imputation method to impute phase for SNP genotypes Hickey, John M Kinghorn, Brian P Tier, Bruce Wilson, James F Dunstan, Neil van der Werf, Julius HJ Genet Sel Evol Research BACKGROUND: Knowing the phase of marker genotype data can be useful in genome-wide association studies, because it makes it possible to use analysis frameworks that account for identity by descent or parent of origin of alleles and it can lead to a large increase in data quantities via genotype or sequence imputation. Long-range phasing and haplotype library imputation constitute a fast and accurate method to impute phase for SNP data. METHODS: A long-range phasing and haplotype library imputation algorithm was developed. It combines information from surrogate parents and long haplotypes to resolve phase in a manner that is not dependent on the family structure of a dataset or on the presence of pedigree information. RESULTS: The algorithm performed well in both simulated and real livestock and human datasets in terms of both phasing accuracy and computation efficiency. The percentage of alleles that could be phased in both simulated and real datasets of varying size generally exceeded 98% while the percentage of alleles incorrectly phased in simulated data was generally less than 0.5%. The accuracy of phasing was affected by dataset size, with lower accuracy for dataset sizes less than 1000, but was not affected by effective population size, family data structure, presence or absence of pedigree information, and SNP density. The method was computationally fast. In comparison to a commonly used statistical method (fastPHASE), the current method made about 8% less phasing mistakes and ran about 26 times faster for a small dataset. For larger datasets, the differences in computational time are expected to be even greater. A computer program implementing these methods has been made available. CONCLUSIONS: The algorithm and software developed in this study make feasible the routine phasing of high-density SNP chips in large datasets. BioMed Central 2011-03-10 /pmc/articles/PMC3068938/ /pubmed/21388557 http://dx.doi.org/10.1186/1297-9686-43-12 Text en Copyright ©2011 Hickey et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Hickey, John M Kinghorn, Brian P Tier, Bruce Wilson, James F Dunstan, Neil van der Werf, Julius HJ A combined long-range phasing and long haplotype imputation method to impute phase for SNP genotypes |
title | A combined long-range phasing and long haplotype imputation method to impute phase for SNP genotypes |
title_full | A combined long-range phasing and long haplotype imputation method to impute phase for SNP genotypes |
title_fullStr | A combined long-range phasing and long haplotype imputation method to impute phase for SNP genotypes |
title_full_unstemmed | A combined long-range phasing and long haplotype imputation method to impute phase for SNP genotypes |
title_short | A combined long-range phasing and long haplotype imputation method to impute phase for SNP genotypes |
title_sort | combined long-range phasing and long haplotype imputation method to impute phase for snp genotypes |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3068938/ https://www.ncbi.nlm.nih.gov/pubmed/21388557 http://dx.doi.org/10.1186/1297-9686-43-12 |
work_keys_str_mv | AT hickeyjohnm acombinedlongrangephasingandlonghaplotypeimputationmethodtoimputephaseforsnpgenotypes AT kinghornbrianp acombinedlongrangephasingandlonghaplotypeimputationmethodtoimputephaseforsnpgenotypes AT tierbruce acombinedlongrangephasingandlonghaplotypeimputationmethodtoimputephaseforsnpgenotypes AT wilsonjamesf acombinedlongrangephasingandlonghaplotypeimputationmethodtoimputephaseforsnpgenotypes AT dunstanneil acombinedlongrangephasingandlonghaplotypeimputationmethodtoimputephaseforsnpgenotypes AT vanderwerfjuliushj acombinedlongrangephasingandlonghaplotypeimputationmethodtoimputephaseforsnpgenotypes AT hickeyjohnm combinedlongrangephasingandlonghaplotypeimputationmethodtoimputephaseforsnpgenotypes AT kinghornbrianp combinedlongrangephasingandlonghaplotypeimputationmethodtoimputephaseforsnpgenotypes AT tierbruce combinedlongrangephasingandlonghaplotypeimputationmethodtoimputephaseforsnpgenotypes AT wilsonjamesf combinedlongrangephasingandlonghaplotypeimputationmethodtoimputephaseforsnpgenotypes AT dunstanneil combinedlongrangephasingandlonghaplotypeimputationmethodtoimputephaseforsnpgenotypes AT vanderwerfjuliushj combinedlongrangephasingandlonghaplotypeimputationmethodtoimputephaseforsnpgenotypes |