Cargando…
The dChip survival analysis module for microarray data
BACKGROUND: Genome-wide expression signatures are emerging as potential marker for overall survival and disease recurrence risk as evidenced by recent commercialization of gene expression based biomarkers in breast cancer. Similar predictions have recently been carried out using genome-wide copy num...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3068974/ https://www.ncbi.nlm.nih.gov/pubmed/21388547 http://dx.doi.org/10.1186/1471-2105-12-72 |
_version_ | 1782201295384346624 |
---|---|
author | Amin, Samir B Shah, Parantu K Yan, Aimin Adamia, Sophia Minvielle, Stéphane Avet-Loiseau, Hervé Munshi, Nikhil C Li, Cheng |
author_facet | Amin, Samir B Shah, Parantu K Yan, Aimin Adamia, Sophia Minvielle, Stéphane Avet-Loiseau, Hervé Munshi, Nikhil C Li, Cheng |
author_sort | Amin, Samir B |
collection | PubMed |
description | BACKGROUND: Genome-wide expression signatures are emerging as potential marker for overall survival and disease recurrence risk as evidenced by recent commercialization of gene expression based biomarkers in breast cancer. Similar predictions have recently been carried out using genome-wide copy number alterations and microRNAs. Existing software packages for microarray data analysis provide functions to define expression-based survival gene signatures. However, there is no software that can perform survival analysis using SNP array data or draw survival curves interactively for expression-based sample clusters. RESULTS: We have developed the survival analysis module in the dChip software that performs survival analysis across the genome for gene expression and copy number microarray data. Built on the current dChip software's microarray analysis functions such as chromosome display and clustering, the new survival functions include interactive exploring of Kaplan-Meier (K-M) plots using expression or copy number data, computing survival p-values from the log-rank test and Cox models, and using permutation to identify significant chromosome regions associated with survival. CONCLUSIONS: The dChip survival module provides user-friendly way to perform survival analysis and visualize the results in the context of genes and cytobands. It requires no coding expertise and only minimal learning curve for thousands of existing dChip users. The implementation in Visual C++ also enables fast computation. The software and demonstration data are freely available at http://dchip-surv.chenglilab.org. |
format | Text |
id | pubmed-3068974 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-30689742011-04-01 The dChip survival analysis module for microarray data Amin, Samir B Shah, Parantu K Yan, Aimin Adamia, Sophia Minvielle, Stéphane Avet-Loiseau, Hervé Munshi, Nikhil C Li, Cheng BMC Bioinformatics Software BACKGROUND: Genome-wide expression signatures are emerging as potential marker for overall survival and disease recurrence risk as evidenced by recent commercialization of gene expression based biomarkers in breast cancer. Similar predictions have recently been carried out using genome-wide copy number alterations and microRNAs. Existing software packages for microarray data analysis provide functions to define expression-based survival gene signatures. However, there is no software that can perform survival analysis using SNP array data or draw survival curves interactively for expression-based sample clusters. RESULTS: We have developed the survival analysis module in the dChip software that performs survival analysis across the genome for gene expression and copy number microarray data. Built on the current dChip software's microarray analysis functions such as chromosome display and clustering, the new survival functions include interactive exploring of Kaplan-Meier (K-M) plots using expression or copy number data, computing survival p-values from the log-rank test and Cox models, and using permutation to identify significant chromosome regions associated with survival. CONCLUSIONS: The dChip survival module provides user-friendly way to perform survival analysis and visualize the results in the context of genes and cytobands. It requires no coding expertise and only minimal learning curve for thousands of existing dChip users. The implementation in Visual C++ also enables fast computation. The software and demonstration data are freely available at http://dchip-surv.chenglilab.org. BioMed Central 2011-03-09 /pmc/articles/PMC3068974/ /pubmed/21388547 http://dx.doi.org/10.1186/1471-2105-12-72 Text en Copyright © 2011 Amin et al; licensee BioMed Central Ltd. https://creativecommons.org/licenses/by/2.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0 (https://creativecommons.org/licenses/by/2.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Software Amin, Samir B Shah, Parantu K Yan, Aimin Adamia, Sophia Minvielle, Stéphane Avet-Loiseau, Hervé Munshi, Nikhil C Li, Cheng The dChip survival analysis module for microarray data |
title | The dChip survival analysis module for microarray data |
title_full | The dChip survival analysis module for microarray data |
title_fullStr | The dChip survival analysis module for microarray data |
title_full_unstemmed | The dChip survival analysis module for microarray data |
title_short | The dChip survival analysis module for microarray data |
title_sort | dchip survival analysis module for microarray data |
topic | Software |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3068974/ https://www.ncbi.nlm.nih.gov/pubmed/21388547 http://dx.doi.org/10.1186/1471-2105-12-72 |
work_keys_str_mv | AT aminsamirb thedchipsurvivalanalysismoduleformicroarraydata AT shahparantuk thedchipsurvivalanalysismoduleformicroarraydata AT yanaimin thedchipsurvivalanalysismoduleformicroarraydata AT adamiasophia thedchipsurvivalanalysismoduleformicroarraydata AT minviellestephane thedchipsurvivalanalysismoduleformicroarraydata AT avetloiseauherve thedchipsurvivalanalysismoduleformicroarraydata AT munshinikhilc thedchipsurvivalanalysismoduleformicroarraydata AT licheng thedchipsurvivalanalysismoduleformicroarraydata AT aminsamirb dchipsurvivalanalysismoduleformicroarraydata AT shahparantuk dchipsurvivalanalysismoduleformicroarraydata AT yanaimin dchipsurvivalanalysismoduleformicroarraydata AT adamiasophia dchipsurvivalanalysismoduleformicroarraydata AT minviellestephane dchipsurvivalanalysismoduleformicroarraydata AT avetloiseauherve dchipsurvivalanalysismoduleformicroarraydata AT munshinikhilc dchipsurvivalanalysismoduleformicroarraydata AT licheng dchipsurvivalanalysismoduleformicroarraydata |