Cargando…

The dChip survival analysis module for microarray data

BACKGROUND: Genome-wide expression signatures are emerging as potential marker for overall survival and disease recurrence risk as evidenced by recent commercialization of gene expression based biomarkers in breast cancer. Similar predictions have recently been carried out using genome-wide copy num...

Descripción completa

Detalles Bibliográficos
Autores principales: Amin, Samir B, Shah, Parantu K, Yan, Aimin, Adamia, Sophia, Minvielle, Stéphane, Avet-Loiseau, Hervé, Munshi, Nikhil C, Li, Cheng
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3068974/
https://www.ncbi.nlm.nih.gov/pubmed/21388547
http://dx.doi.org/10.1186/1471-2105-12-72
_version_ 1782201295384346624
author Amin, Samir B
Shah, Parantu K
Yan, Aimin
Adamia, Sophia
Minvielle, Stéphane
Avet-Loiseau, Hervé
Munshi, Nikhil C
Li, Cheng
author_facet Amin, Samir B
Shah, Parantu K
Yan, Aimin
Adamia, Sophia
Minvielle, Stéphane
Avet-Loiseau, Hervé
Munshi, Nikhil C
Li, Cheng
author_sort Amin, Samir B
collection PubMed
description BACKGROUND: Genome-wide expression signatures are emerging as potential marker for overall survival and disease recurrence risk as evidenced by recent commercialization of gene expression based biomarkers in breast cancer. Similar predictions have recently been carried out using genome-wide copy number alterations and microRNAs. Existing software packages for microarray data analysis provide functions to define expression-based survival gene signatures. However, there is no software that can perform survival analysis using SNP array data or draw survival curves interactively for expression-based sample clusters. RESULTS: We have developed the survival analysis module in the dChip software that performs survival analysis across the genome for gene expression and copy number microarray data. Built on the current dChip software's microarray analysis functions such as chromosome display and clustering, the new survival functions include interactive exploring of Kaplan-Meier (K-M) plots using expression or copy number data, computing survival p-values from the log-rank test and Cox models, and using permutation to identify significant chromosome regions associated with survival. CONCLUSIONS: The dChip survival module provides user-friendly way to perform survival analysis and visualize the results in the context of genes and cytobands. It requires no coding expertise and only minimal learning curve for thousands of existing dChip users. The implementation in Visual C++ also enables fast computation. The software and demonstration data are freely available at http://dchip-surv.chenglilab.org.
format Text
id pubmed-3068974
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-30689742011-04-01 The dChip survival analysis module for microarray data Amin, Samir B Shah, Parantu K Yan, Aimin Adamia, Sophia Minvielle, Stéphane Avet-Loiseau, Hervé Munshi, Nikhil C Li, Cheng BMC Bioinformatics Software BACKGROUND: Genome-wide expression signatures are emerging as potential marker for overall survival and disease recurrence risk as evidenced by recent commercialization of gene expression based biomarkers in breast cancer. Similar predictions have recently been carried out using genome-wide copy number alterations and microRNAs. Existing software packages for microarray data analysis provide functions to define expression-based survival gene signatures. However, there is no software that can perform survival analysis using SNP array data or draw survival curves interactively for expression-based sample clusters. RESULTS: We have developed the survival analysis module in the dChip software that performs survival analysis across the genome for gene expression and copy number microarray data. Built on the current dChip software's microarray analysis functions such as chromosome display and clustering, the new survival functions include interactive exploring of Kaplan-Meier (K-M) plots using expression or copy number data, computing survival p-values from the log-rank test and Cox models, and using permutation to identify significant chromosome regions associated with survival. CONCLUSIONS: The dChip survival module provides user-friendly way to perform survival analysis and visualize the results in the context of genes and cytobands. It requires no coding expertise and only minimal learning curve for thousands of existing dChip users. The implementation in Visual C++ also enables fast computation. The software and demonstration data are freely available at http://dchip-surv.chenglilab.org. BioMed Central 2011-03-09 /pmc/articles/PMC3068974/ /pubmed/21388547 http://dx.doi.org/10.1186/1471-2105-12-72 Text en Copyright © 2011 Amin et al; licensee BioMed Central Ltd. https://creativecommons.org/licenses/by/2.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0 (https://creativecommons.org/licenses/by/2.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Software
Amin, Samir B
Shah, Parantu K
Yan, Aimin
Adamia, Sophia
Minvielle, Stéphane
Avet-Loiseau, Hervé
Munshi, Nikhil C
Li, Cheng
The dChip survival analysis module for microarray data
title The dChip survival analysis module for microarray data
title_full The dChip survival analysis module for microarray data
title_fullStr The dChip survival analysis module for microarray data
title_full_unstemmed The dChip survival analysis module for microarray data
title_short The dChip survival analysis module for microarray data
title_sort dchip survival analysis module for microarray data
topic Software
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3068974/
https://www.ncbi.nlm.nih.gov/pubmed/21388547
http://dx.doi.org/10.1186/1471-2105-12-72
work_keys_str_mv AT aminsamirb thedchipsurvivalanalysismoduleformicroarraydata
AT shahparantuk thedchipsurvivalanalysismoduleformicroarraydata
AT yanaimin thedchipsurvivalanalysismoduleformicroarraydata
AT adamiasophia thedchipsurvivalanalysismoduleformicroarraydata
AT minviellestephane thedchipsurvivalanalysismoduleformicroarraydata
AT avetloiseauherve thedchipsurvivalanalysismoduleformicroarraydata
AT munshinikhilc thedchipsurvivalanalysismoduleformicroarraydata
AT licheng thedchipsurvivalanalysismoduleformicroarraydata
AT aminsamirb dchipsurvivalanalysismoduleformicroarraydata
AT shahparantuk dchipsurvivalanalysismoduleformicroarraydata
AT yanaimin dchipsurvivalanalysismoduleformicroarraydata
AT adamiasophia dchipsurvivalanalysismoduleformicroarraydata
AT minviellestephane dchipsurvivalanalysismoduleformicroarraydata
AT avetloiseauherve dchipsurvivalanalysismoduleformicroarraydata
AT munshinikhilc dchipsurvivalanalysismoduleformicroarraydata
AT licheng dchipsurvivalanalysismoduleformicroarraydata