Cargando…
Defining an informativeness metric for clustering gene expression data
Motivation: Unsupervised ‘cluster’ analysis is an invaluable tool for exploratory microarray data analysis, as it organizes the data into groups of genes or samples in which the elements share common patterns. Once the data are clustered, finding the optimal number of informative subgroups within a...
Autores principales: | Mar, Jessica C., Wells, Christine A., Quackenbush, John |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072547/ https://www.ncbi.nlm.nih.gov/pubmed/21330289 http://dx.doi.org/10.1093/bioinformatics/btr074 |
Ejemplares similares
-
attract: A Method for Identifying Core Pathways That Define Cellular Phenotypes
por: Mar, Jessica C., et al.
Publicado: (2011) -
Metric learning on expression data for gene function prediction
por: Makrodimitris, Stavros, et al.
Publicado: (2020) -
Decomposition of Gene Expression State Space Trajectories
por: Mar, Jessica C., et al.
Publicado: (2009) -
Clustering gene expression data with a penalized graph-based metric
por: Bayá, Ariel E, et al.
Publicado: (2011) -
Gene Expression Variability as a Unifying Element of the Pluripotency Network
por: Mason, Elizabeth A., et al.
Publicado: (2014)