Cargando…

Automatically identifying and annotating mouse embryo gene expression patterns

Motivation: Deciphering the regulatory and developmental mechanisms for multicellular organisms requires detailed knowledge of gene interactions and gene expressions. The availability of large datasets with both spatial and ontological annotation of the spatio-temporal patterns of gene expression in...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Liangxiu, van Hemert, Jano I., Baldock, Richard A.
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072560/
https://www.ncbi.nlm.nih.gov/pubmed/21357576
http://dx.doi.org/10.1093/bioinformatics/btr105
_version_ 1782201575216775168
author Han, Liangxiu
van Hemert, Jano I.
Baldock, Richard A.
author_facet Han, Liangxiu
van Hemert, Jano I.
Baldock, Richard A.
author_sort Han, Liangxiu
collection PubMed
description Motivation: Deciphering the regulatory and developmental mechanisms for multicellular organisms requires detailed knowledge of gene interactions and gene expressions. The availability of large datasets with both spatial and ontological annotation of the spatio-temporal patterns of gene expression in mouse embryo provides a powerful resource to discover the biological function of embryo organization. Ontological annotation of gene expressions consists of labelling images with terms from the anatomy ontology for mouse development. If the spatial genes of an anatomical component are expressed in an image, the image is then tagged with a term of that anatomical component. The current annotation is done manually by domain experts, which is both time consuming and costly. In addition, the level of detail is variable, and inevitably errors arise from the tedious nature of the task. In this article, we present a new method to automatically identify and annotate gene expression patterns in the mouse embryo with anatomical terms. Results: The method takes images from in situ hybridization studies and the ontology for the developing mouse embryo, it then combines machine learning and image processing techniques to produce classifiers that automatically identify and annotate gene expression patterns in these images. We evaluate our method on image data from the EURExpress study, where we use it to automatically classify nine anatomical terms: humerus, handplate, fibula, tibia, femur, ribs, petrous part, scapula and head mesenchyme. The accuracy of our method lies between 70% and 80% with few exceptions. We show that other known methods have lower classification performance than ours. We have investigated the images misclassified by our method and found several cases where the original annotation was not correct. This shows our method is robust against this kind of noise. Availability: The annotation result and the experimental dataset in the article can be freely accessed at http://www2.docm.mmu.ac.uk/STAFF/L.Han/geneannotation/. Contact: l.han@mmu.ac.uk Supplementary Information: Supplementary data are available at Bioinformatics online.
format Text
id pubmed-3072560
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-30725602011-04-11 Automatically identifying and annotating mouse embryo gene expression patterns Han, Liangxiu van Hemert, Jano I. Baldock, Richard A. Bioinformatics Original Papers Motivation: Deciphering the regulatory and developmental mechanisms for multicellular organisms requires detailed knowledge of gene interactions and gene expressions. The availability of large datasets with both spatial and ontological annotation of the spatio-temporal patterns of gene expression in mouse embryo provides a powerful resource to discover the biological function of embryo organization. Ontological annotation of gene expressions consists of labelling images with terms from the anatomy ontology for mouse development. If the spatial genes of an anatomical component are expressed in an image, the image is then tagged with a term of that anatomical component. The current annotation is done manually by domain experts, which is both time consuming and costly. In addition, the level of detail is variable, and inevitably errors arise from the tedious nature of the task. In this article, we present a new method to automatically identify and annotate gene expression patterns in the mouse embryo with anatomical terms. Results: The method takes images from in situ hybridization studies and the ontology for the developing mouse embryo, it then combines machine learning and image processing techniques to produce classifiers that automatically identify and annotate gene expression patterns in these images. We evaluate our method on image data from the EURExpress study, where we use it to automatically classify nine anatomical terms: humerus, handplate, fibula, tibia, femur, ribs, petrous part, scapula and head mesenchyme. The accuracy of our method lies between 70% and 80% with few exceptions. We show that other known methods have lower classification performance than ours. We have investigated the images misclassified by our method and found several cases where the original annotation was not correct. This shows our method is robust against this kind of noise. Availability: The annotation result and the experimental dataset in the article can be freely accessed at http://www2.docm.mmu.ac.uk/STAFF/L.Han/geneannotation/. Contact: l.han@mmu.ac.uk Supplementary Information: Supplementary data are available at Bioinformatics online. Oxford University Press 2011-04-15 2011-02-25 /pmc/articles/PMC3072560/ /pubmed/21357576 http://dx.doi.org/10.1093/bioinformatics/btr105 Text en © The Author(s) 2011. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/2.5 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Papers
Han, Liangxiu
van Hemert, Jano I.
Baldock, Richard A.
Automatically identifying and annotating mouse embryo gene expression patterns
title Automatically identifying and annotating mouse embryo gene expression patterns
title_full Automatically identifying and annotating mouse embryo gene expression patterns
title_fullStr Automatically identifying and annotating mouse embryo gene expression patterns
title_full_unstemmed Automatically identifying and annotating mouse embryo gene expression patterns
title_short Automatically identifying and annotating mouse embryo gene expression patterns
title_sort automatically identifying and annotating mouse embryo gene expression patterns
topic Original Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072560/
https://www.ncbi.nlm.nih.gov/pubmed/21357576
http://dx.doi.org/10.1093/bioinformatics/btr105
work_keys_str_mv AT hanliangxiu automaticallyidentifyingandannotatingmouseembryogeneexpressionpatterns
AT vanhemertjanoi automaticallyidentifyingandannotatingmouseembryogeneexpressionpatterns
AT baldockricharda automaticallyidentifyingandannotatingmouseembryogeneexpressionpatterns