Cargando…

Using MATLAB software with Tomcat server and Java platform for remote image analysis in pathology

BACKGROUND: The Matlab software is a one of the most advanced development tool for application in engineering practice. From our point of view the most important is the image processing toolbox, offering many built-in functions, including mathematical morphology, and implementation of a many artific...

Descripción completa

Detalles Bibliográficos
Autor principal: Markiewicz, Tomasz
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073211/
https://www.ncbi.nlm.nih.gov/pubmed/21489188
http://dx.doi.org/10.1186/1746-1596-6-S1-S18
_version_ 1782201623674617856
author Markiewicz, Tomasz
author_facet Markiewicz, Tomasz
author_sort Markiewicz, Tomasz
collection PubMed
description BACKGROUND: The Matlab software is a one of the most advanced development tool for application in engineering practice. From our point of view the most important is the image processing toolbox, offering many built-in functions, including mathematical morphology, and implementation of a many artificial neural networks as AI. It is very popular platform for creation of the specialized program for image analysis, also in pathology. Based on the latest version of Matlab Builder Java toolbox, it is possible to create the software, serving as a remote system for image analysis in pathology via internet communication. The internet platform can be realized based on Java Servlet Pages with Tomcat server as servlet container. METHODS: In presented software implementation we propose remote image analysis realized by Matlab algorithms. These algorithms can be compiled to executable jar file with the help of Matlab Builder Java toolbox. The Matlab function must be declared with the set of input data, output structure with numerical results and Matlab web figure. Any function prepared in that manner can be used as a Java function in Java Servlet Pages (JSP). The graphical user interface providing the input data and displaying the results (also in graphical form) must be implemented in JSP. Additionally the data storage to database can be implemented within algorithm written in Matlab with the help of Matlab Database Toolbox directly with the image processing. The complete JSP page can be run by Tomcat server. RESULTS: The proposed tool for remote image analysis was tested on the Computerized Analysis of Medical Images (CAMI) software developed by author. The user provides image and case information (diagnosis, staining, image parameter etc.). When analysis is initialized, input data with image are sent to servlet on Tomcat. When analysis is done, client obtains the graphical results as an image with marked recognized cells and also the quantitative output. Additionally, the results are stored in a server database. The internet platform was tested on PC Intel Core2 Duo T9600 2.8GHz 4GB RAM server with 768x576 pixel size, 1.28Mb tiff format images reffering to meningioma tumour (x400, Ki-67/MIB-1). The time consumption was as following: at analysis by CAMI, locally on a server – 3.5 seconds, at remote analysis – 26 seconds, from which 22 seconds were used for data transfer via internet connection. At jpg format image (102 Kb) the consumption time was reduced to 14 seconds. CONCLUSIONS: The results have confirmed that designed remote platform can be useful for pathology image analysis. The time consumption is depended mainly on the image size and speed of the internet connections. The presented implementation can be used for many types of analysis at different staining, tissue, morphometry approaches, etc. The significant problem is the implementation of the JSP page in the multithread form, that can be used parallelly by many users. The presented platform for image analysis in pathology can be especially useful for small laboratory without its own image analysis system.
format Text
id pubmed-3073211
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-30732112011-04-12 Using MATLAB software with Tomcat server and Java platform for remote image analysis in pathology Markiewicz, Tomasz Diagn Pathol Proceedings BACKGROUND: The Matlab software is a one of the most advanced development tool for application in engineering practice. From our point of view the most important is the image processing toolbox, offering many built-in functions, including mathematical morphology, and implementation of a many artificial neural networks as AI. It is very popular platform for creation of the specialized program for image analysis, also in pathology. Based on the latest version of Matlab Builder Java toolbox, it is possible to create the software, serving as a remote system for image analysis in pathology via internet communication. The internet platform can be realized based on Java Servlet Pages with Tomcat server as servlet container. METHODS: In presented software implementation we propose remote image analysis realized by Matlab algorithms. These algorithms can be compiled to executable jar file with the help of Matlab Builder Java toolbox. The Matlab function must be declared with the set of input data, output structure with numerical results and Matlab web figure. Any function prepared in that manner can be used as a Java function in Java Servlet Pages (JSP). The graphical user interface providing the input data and displaying the results (also in graphical form) must be implemented in JSP. Additionally the data storage to database can be implemented within algorithm written in Matlab with the help of Matlab Database Toolbox directly with the image processing. The complete JSP page can be run by Tomcat server. RESULTS: The proposed tool for remote image analysis was tested on the Computerized Analysis of Medical Images (CAMI) software developed by author. The user provides image and case information (diagnosis, staining, image parameter etc.). When analysis is initialized, input data with image are sent to servlet on Tomcat. When analysis is done, client obtains the graphical results as an image with marked recognized cells and also the quantitative output. Additionally, the results are stored in a server database. The internet platform was tested on PC Intel Core2 Duo T9600 2.8GHz 4GB RAM server with 768x576 pixel size, 1.28Mb tiff format images reffering to meningioma tumour (x400, Ki-67/MIB-1). The time consumption was as following: at analysis by CAMI, locally on a server – 3.5 seconds, at remote analysis – 26 seconds, from which 22 seconds were used for data transfer via internet connection. At jpg format image (102 Kb) the consumption time was reduced to 14 seconds. CONCLUSIONS: The results have confirmed that designed remote platform can be useful for pathology image analysis. The time consumption is depended mainly on the image size and speed of the internet connections. The presented implementation can be used for many types of analysis at different staining, tissue, morphometry approaches, etc. The significant problem is the implementation of the JSP page in the multithread form, that can be used parallelly by many users. The presented platform for image analysis in pathology can be especially useful for small laboratory without its own image analysis system. BioMed Central 2011-03-30 /pmc/articles/PMC3073211/ /pubmed/21489188 http://dx.doi.org/10.1186/1746-1596-6-S1-S18 Text en Copyright ©2011 Markiewicz; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Proceedings
Markiewicz, Tomasz
Using MATLAB software with Tomcat server and Java platform for remote image analysis in pathology
title Using MATLAB software with Tomcat server and Java platform for remote image analysis in pathology
title_full Using MATLAB software with Tomcat server and Java platform for remote image analysis in pathology
title_fullStr Using MATLAB software with Tomcat server and Java platform for remote image analysis in pathology
title_full_unstemmed Using MATLAB software with Tomcat server and Java platform for remote image analysis in pathology
title_short Using MATLAB software with Tomcat server and Java platform for remote image analysis in pathology
title_sort using matlab software with tomcat server and java platform for remote image analysis in pathology
topic Proceedings
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073211/
https://www.ncbi.nlm.nih.gov/pubmed/21489188
http://dx.doi.org/10.1186/1746-1596-6-S1-S18
work_keys_str_mv AT markiewicztomasz usingmatlabsoftwarewithtomcatserverandjavaplatformforremoteimageanalysisinpathology