Cargando…
Quantitative genetics of taura syndrome resistance in pacific white shrimp (penaeus vannamei): a cure model approach
BACKGROUND: In aquaculture breeding, resistance against infectious diseases is commonly assessed as time until death under exposure to a pathogen. For some diseases, a fraction of the individuals may appear as "cured" (non-susceptible), and the resulting survival time may thus be a result...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073882/ https://www.ncbi.nlm.nih.gov/pubmed/21418636 http://dx.doi.org/10.1186/1297-9686-43-14 |
_version_ | 1782201652281868288 |
---|---|
author | Ødegård, Jørgen Gitterle, Thomas Madsen, Per Meuwissen, Theo HE Yazdi, M Hossein Gjerde, Bjarne Pulgarin, Carlos Rye, Morten |
author_facet | Ødegård, Jørgen Gitterle, Thomas Madsen, Per Meuwissen, Theo HE Yazdi, M Hossein Gjerde, Bjarne Pulgarin, Carlos Rye, Morten |
author_sort | Ødegård, Jørgen |
collection | PubMed |
description | BACKGROUND: In aquaculture breeding, resistance against infectious diseases is commonly assessed as time until death under exposure to a pathogen. For some diseases, a fraction of the individuals may appear as "cured" (non-susceptible), and the resulting survival time may thus be a result of two confounded underlying traits, i.e., endurance (individual hazard) and susceptibility (whether at risk or not), which may be accounted for by fitting a cure survival model. We applied a cure model to survival data of Pacific white shrimp (Penaeus vannamei) challenged with the Taura syndrome virus, which is one of the major pathogens of Panaeid shrimp species. METHODS: In total, 15,261 individuals of 513 full-sib families from three generations were challenge-tested in 21 separate tests (tanks). All challenge-tests were run until mortality naturally ceased. Time-until-event data were analyzed with a mixed cure survival model using Gibbs sampling, treating susceptibility and endurance as separate genetic traits. RESULTS: Overall mortality at the end of test was 28%, while 38% of the population was considered susceptible to the disease. The estimated underlying heritability was high for susceptibility (0.41 ± 0.07), but low for endurance (0.07 ± 0.03). Furthermore, endurance and susceptibility were distinct genetic traits (r(g )= 0.22 ± 0.25). Estimated breeding values for endurance and susceptibility were only moderately correlated (0.50), while estimated breeding values from classical models for analysis of challenge-test survival (ignoring the cured fraction) were closely correlated with estimated breeding values for susceptibility, but less correlated with estimated breeding values for endurance. CONCLUSIONS: For Taura syndrome resistance, endurance and susceptibility are apparently distinct genetic traits. However, genetic evaluation of susceptibility based on the cure model showed clear associations with standard genetic evaluations that ignore the cure fraction for these data. Using the current testing design, genetic variation in observed survival time and absolute survival at the end of test were most likely dominated by genetic variation in susceptibility. If the aim is to reduce susceptibility, earlier termination of the challenge-test or back-truncation of the follow-up period should be avoided, as this may shift focus of selection towards endurance rather than susceptibility. |
format | Text |
id | pubmed-3073882 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-30738822011-04-12 Quantitative genetics of taura syndrome resistance in pacific white shrimp (penaeus vannamei): a cure model approach Ødegård, Jørgen Gitterle, Thomas Madsen, Per Meuwissen, Theo HE Yazdi, M Hossein Gjerde, Bjarne Pulgarin, Carlos Rye, Morten Genet Sel Evol Research BACKGROUND: In aquaculture breeding, resistance against infectious diseases is commonly assessed as time until death under exposure to a pathogen. For some diseases, a fraction of the individuals may appear as "cured" (non-susceptible), and the resulting survival time may thus be a result of two confounded underlying traits, i.e., endurance (individual hazard) and susceptibility (whether at risk or not), which may be accounted for by fitting a cure survival model. We applied a cure model to survival data of Pacific white shrimp (Penaeus vannamei) challenged with the Taura syndrome virus, which is one of the major pathogens of Panaeid shrimp species. METHODS: In total, 15,261 individuals of 513 full-sib families from three generations were challenge-tested in 21 separate tests (tanks). All challenge-tests were run until mortality naturally ceased. Time-until-event data were analyzed with a mixed cure survival model using Gibbs sampling, treating susceptibility and endurance as separate genetic traits. RESULTS: Overall mortality at the end of test was 28%, while 38% of the population was considered susceptible to the disease. The estimated underlying heritability was high for susceptibility (0.41 ± 0.07), but low for endurance (0.07 ± 0.03). Furthermore, endurance and susceptibility were distinct genetic traits (r(g )= 0.22 ± 0.25). Estimated breeding values for endurance and susceptibility were only moderately correlated (0.50), while estimated breeding values from classical models for analysis of challenge-test survival (ignoring the cured fraction) were closely correlated with estimated breeding values for susceptibility, but less correlated with estimated breeding values for endurance. CONCLUSIONS: For Taura syndrome resistance, endurance and susceptibility are apparently distinct genetic traits. However, genetic evaluation of susceptibility based on the cure model showed clear associations with standard genetic evaluations that ignore the cure fraction for these data. Using the current testing design, genetic variation in observed survival time and absolute survival at the end of test were most likely dominated by genetic variation in susceptibility. If the aim is to reduce susceptibility, earlier termination of the challenge-test or back-truncation of the follow-up period should be avoided, as this may shift focus of selection towards endurance rather than susceptibility. BioMed Central 2011-03-21 /pmc/articles/PMC3073882/ /pubmed/21418636 http://dx.doi.org/10.1186/1297-9686-43-14 Text en Copyright ©2011 Ødegård et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Ødegård, Jørgen Gitterle, Thomas Madsen, Per Meuwissen, Theo HE Yazdi, M Hossein Gjerde, Bjarne Pulgarin, Carlos Rye, Morten Quantitative genetics of taura syndrome resistance in pacific white shrimp (penaeus vannamei): a cure model approach |
title | Quantitative genetics of taura syndrome resistance in pacific white shrimp (penaeus vannamei): a cure model approach |
title_full | Quantitative genetics of taura syndrome resistance in pacific white shrimp (penaeus vannamei): a cure model approach |
title_fullStr | Quantitative genetics of taura syndrome resistance in pacific white shrimp (penaeus vannamei): a cure model approach |
title_full_unstemmed | Quantitative genetics of taura syndrome resistance in pacific white shrimp (penaeus vannamei): a cure model approach |
title_short | Quantitative genetics of taura syndrome resistance in pacific white shrimp (penaeus vannamei): a cure model approach |
title_sort | quantitative genetics of taura syndrome resistance in pacific white shrimp (penaeus vannamei): a cure model approach |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073882/ https://www.ncbi.nlm.nih.gov/pubmed/21418636 http://dx.doi.org/10.1186/1297-9686-43-14 |
work_keys_str_mv | AT ødegardjørgen quantitativegeneticsoftaurasyndromeresistanceinpacificwhiteshrimppenaeusvannameiacuremodelapproach AT gitterlethomas quantitativegeneticsoftaurasyndromeresistanceinpacificwhiteshrimppenaeusvannameiacuremodelapproach AT madsenper quantitativegeneticsoftaurasyndromeresistanceinpacificwhiteshrimppenaeusvannameiacuremodelapproach AT meuwissentheohe quantitativegeneticsoftaurasyndromeresistanceinpacificwhiteshrimppenaeusvannameiacuremodelapproach AT yazdimhossein quantitativegeneticsoftaurasyndromeresistanceinpacificwhiteshrimppenaeusvannameiacuremodelapproach AT gjerdebjarne quantitativegeneticsoftaurasyndromeresistanceinpacificwhiteshrimppenaeusvannameiacuremodelapproach AT pulgarincarlos quantitativegeneticsoftaurasyndromeresistanceinpacificwhiteshrimppenaeusvannameiacuremodelapproach AT ryemorten quantitativegeneticsoftaurasyndromeresistanceinpacificwhiteshrimppenaeusvannameiacuremodelapproach |