Cargando…
An expanded phylogeny of social amoebas (Dictyostelia) shows increasing diversity and new morphological patterns
BACKGROUND: Social Amoebae or Dictyostelia are eukaryotic microbes with a unique life cycle consisting of both uni- and multicellular stages. They have long fascinated molecular, developmental and evolutionary biologists, and Dictyostelium discoideum is now one of the most widely studied eukaryotic...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073913/ https://www.ncbi.nlm.nih.gov/pubmed/21453486 http://dx.doi.org/10.1186/1471-2148-11-84 |
_version_ | 1782201659957444608 |
---|---|
author | Romeralo, Maria Cavender, James C Landolt, John C Stephenson, Steven L Baldauf, Sandra L |
author_facet | Romeralo, Maria Cavender, James C Landolt, John C Stephenson, Steven L Baldauf, Sandra L |
author_sort | Romeralo, Maria |
collection | PubMed |
description | BACKGROUND: Social Amoebae or Dictyostelia are eukaryotic microbes with a unique life cycle consisting of both uni- and multicellular stages. They have long fascinated molecular, developmental and evolutionary biologists, and Dictyostelium discoideum is now one of the most widely studied eukaryotic microbial models. The first molecular phylogeny of Dictyostelia included most of the species known at the time and suggested an extremely deep taxon with a molecular depth roughly equivalent to Metazoa. The group was also shown to consist of four major clades, none of which correspond to traditional genera. Potential morphological justification was identified for three of the four major groups, on the basis of which tentative names were assigned. RESULTS: Over the past four years, the Mycetozoan Global Biodiversity Survey has identified many new isolates that appear to be new species of Dictyostelia, along with numerous isolates of previously described species. We have determined 18S ribosomal RNA gene sequences for all of these new isolates. Phylogenetic analyses of these data show at least 50 new species, and these arise from throughout the dictyostelid tree breaking up many previously isolated long branches. The resulting tree now shows eight well-supported major groups instead of the original four. The new species also expand the known morphological diversity of the previously established four major groups, violating nearly all previously suggested deep morphological patterns. CONCLUSIONS: A greatly expanded phylogeny of Dictyostelia now shows even greater morphological plasticity at deep taxonomic levels. In fact, there now seem to be no obvious deep evolutionary trends across the group. However at a finer level, patterns in morphological character evolution are beginning to emerge. These results also suggest that there is a far greater diversity of Dictyostelia yet to be discovered, including novel morphologies. |
format | Text |
id | pubmed-3073913 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-30739132011-04-12 An expanded phylogeny of social amoebas (Dictyostelia) shows increasing diversity and new morphological patterns Romeralo, Maria Cavender, James C Landolt, John C Stephenson, Steven L Baldauf, Sandra L BMC Evol Biol Research Article BACKGROUND: Social Amoebae or Dictyostelia are eukaryotic microbes with a unique life cycle consisting of both uni- and multicellular stages. They have long fascinated molecular, developmental and evolutionary biologists, and Dictyostelium discoideum is now one of the most widely studied eukaryotic microbial models. The first molecular phylogeny of Dictyostelia included most of the species known at the time and suggested an extremely deep taxon with a molecular depth roughly equivalent to Metazoa. The group was also shown to consist of four major clades, none of which correspond to traditional genera. Potential morphological justification was identified for three of the four major groups, on the basis of which tentative names were assigned. RESULTS: Over the past four years, the Mycetozoan Global Biodiversity Survey has identified many new isolates that appear to be new species of Dictyostelia, along with numerous isolates of previously described species. We have determined 18S ribosomal RNA gene sequences for all of these new isolates. Phylogenetic analyses of these data show at least 50 new species, and these arise from throughout the dictyostelid tree breaking up many previously isolated long branches. The resulting tree now shows eight well-supported major groups instead of the original four. The new species also expand the known morphological diversity of the previously established four major groups, violating nearly all previously suggested deep morphological patterns. CONCLUSIONS: A greatly expanded phylogeny of Dictyostelia now shows even greater morphological plasticity at deep taxonomic levels. In fact, there now seem to be no obvious deep evolutionary trends across the group. However at a finer level, patterns in morphological character evolution are beginning to emerge. These results also suggest that there is a far greater diversity of Dictyostelia yet to be discovered, including novel morphologies. BioMed Central 2011-03-31 /pmc/articles/PMC3073913/ /pubmed/21453486 http://dx.doi.org/10.1186/1471-2148-11-84 Text en Copyright ©2011 Romeralo et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Romeralo, Maria Cavender, James C Landolt, John C Stephenson, Steven L Baldauf, Sandra L An expanded phylogeny of social amoebas (Dictyostelia) shows increasing diversity and new morphological patterns |
title | An expanded phylogeny of social amoebas (Dictyostelia) shows increasing diversity and new morphological patterns |
title_full | An expanded phylogeny of social amoebas (Dictyostelia) shows increasing diversity and new morphological patterns |
title_fullStr | An expanded phylogeny of social amoebas (Dictyostelia) shows increasing diversity and new morphological patterns |
title_full_unstemmed | An expanded phylogeny of social amoebas (Dictyostelia) shows increasing diversity and new morphological patterns |
title_short | An expanded phylogeny of social amoebas (Dictyostelia) shows increasing diversity and new morphological patterns |
title_sort | expanded phylogeny of social amoebas (dictyostelia) shows increasing diversity and new morphological patterns |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073913/ https://www.ncbi.nlm.nih.gov/pubmed/21453486 http://dx.doi.org/10.1186/1471-2148-11-84 |
work_keys_str_mv | AT romeralomaria anexpandedphylogenyofsocialamoebasdictyosteliashowsincreasingdiversityandnewmorphologicalpatterns AT cavenderjamesc anexpandedphylogenyofsocialamoebasdictyosteliashowsincreasingdiversityandnewmorphologicalpatterns AT landoltjohnc anexpandedphylogenyofsocialamoebasdictyosteliashowsincreasingdiversityandnewmorphologicalpatterns AT stephensonstevenl anexpandedphylogenyofsocialamoebasdictyosteliashowsincreasingdiversityandnewmorphologicalpatterns AT baldaufsandral anexpandedphylogenyofsocialamoebasdictyosteliashowsincreasingdiversityandnewmorphologicalpatterns AT romeralomaria expandedphylogenyofsocialamoebasdictyosteliashowsincreasingdiversityandnewmorphologicalpatterns AT cavenderjamesc expandedphylogenyofsocialamoebasdictyosteliashowsincreasingdiversityandnewmorphologicalpatterns AT landoltjohnc expandedphylogenyofsocialamoebasdictyosteliashowsincreasingdiversityandnewmorphologicalpatterns AT stephensonstevenl expandedphylogenyofsocialamoebasdictyosteliashowsincreasingdiversityandnewmorphologicalpatterns AT baldaufsandral expandedphylogenyofsocialamoebasdictyosteliashowsincreasingdiversityandnewmorphologicalpatterns |