Cargando…
Fates-shifted, a novel F-box protein that targets Bicoid for degradation, regulates developmental fate determination in Drosophila embryos
Bicoid (Bcd) is a morphogenetic protein that instructs patterning along the anterior-posterior (A-P) axis in Drosophila embryos. Despite extensive studies, what controls the formation of a normal concentration gradient of Bcd remains an unresolved and controversial question. In this report we show t...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074934/ https://www.ncbi.nlm.nih.gov/pubmed/21170036 http://dx.doi.org/10.1038/ncb2141 |
Sumario: | Bicoid (Bcd) is a morphogenetic protein that instructs patterning along the anterior-posterior (A-P) axis in Drosophila embryos. Despite extensive studies, what controls the formation of a normal concentration gradient of Bcd remains an unresolved and controversial question. In this report we show that Bcd protein degradation is mediated by the ubiquitin-proteasome pathway. We identify a novel F-box protein, encoded by fates-shifted (fsd), that plays an important role in Bcd protein degradation by targeting it for ubiquitination. Embryos from females lacking fsd have an altered Bcd gradient profile, resulting in a shift of the fatemap along the A-P axis. Our study represents a first experimental demonstration that, contrary to an alternative hypothesis, Bcd protein degradation is required for normal gradient formation and developmental fate determination. |
---|