Cargando…

Functional identification of an aggression locus in the mouse hypothalamus

Electrical stimulation of certain hypothalamic regions in cats and rodents can elicit attack behavior, but the exact location of relevant cells within these regions, their requirement for naturally occurring aggression and their relationship to mating circuits have not been clear. Genetic methods fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Dayu, Boyle, Maureen P., Dollar, Piotr, Lee, Hyosang, Perona, Pietro, Lein, Ed S., Anderson, David J.
Formato: Texto
Lenguaje:English
Publicado: 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3075820/
https://www.ncbi.nlm.nih.gov/pubmed/21307935
http://dx.doi.org/10.1038/nature09736
Descripción
Sumario:Electrical stimulation of certain hypothalamic regions in cats and rodents can elicit attack behavior, but the exact location of relevant cells within these regions, their requirement for naturally occurring aggression and their relationship to mating circuits have not been clear. Genetic methods for neural circuit manipulation in mice provide a potentially powerful approach to this problem, but brain stimulation-evoked aggression has never been demonstrated in this species. Here we show that optogenetic, but not electrical, stimulation of neurons in the ventromedial hypothalamus, ventrolateral subdivision (VMHvl) causes male mice to attack both females and inanimate objects, as well as males. Pharmacogenetic silencing of VMHvl reversibly inhibits inter-male aggression. Immediate early gene analysis and single unit recordings from VMHvl during social interactions reveal overlapping but distinct neuronal subpopulations involved in fighting and mating. Neurons activated during attack are inhibited during mating, suggesting a potential neural substrate for competition between these behaviors.