Cargando…
Simultaneous 2-photon calcium imaging at different cortical depths in vivo with spatiotemporal multiplexing
In vivo 2-photon calcium imaging would benefit from the use of multiple excitation beams to increase scanning speed, signal-to-noise ratio, field of view, or to image different axial planes simultaneously. We adapted a spatiotemporal multiplexing approach to circumvent the problem of light scatterin...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076599/ https://www.ncbi.nlm.nih.gov/pubmed/21217749 http://dx.doi.org/10.1038/nmeth.1552 |
Sumario: | In vivo 2-photon calcium imaging would benefit from the use of multiple excitation beams to increase scanning speed, signal-to-noise ratio, field of view, or to image different axial planes simultaneously. We adapted a spatiotemporal multiplexing approach to circumvent the problem of light scattering ambiguity in deep tissue inherent to multifocal 2-photon microscopy. We demonstrate 2-photon calcium imaging at multiple axial planes in the in vivo mouse brain to monitor network activity of large ensembles of cortical neurons in three spatial dimensions. |
---|