Cargando…

Replication Stress Induces Micronuclei Comprising of Aggregated DNA Double-Strand Breaks

BACKGROUND: Micronuclei (MN) in mammalian cells serve as a reliable biomarker of genomic instability and genotoxic exposure. Elevation of MN is commonly observed in cells bearing intrinsic genomic instability and in normal cells exposed to genotoxic agents. DNA double-strand breaks are marked by pho...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Bing, Sun, Zhaoliang, Liu, Zhaojian, Guo, Haiyang, Liu, Qiao, Jiang, Haiyan, Zou, Yongxin, Gong, Yaoqin, Tischfield, Jay A., Shao, Changshun
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3078113/
https://www.ncbi.nlm.nih.gov/pubmed/21525980
http://dx.doi.org/10.1371/journal.pone.0018618
Descripción
Sumario:BACKGROUND: Micronuclei (MN) in mammalian cells serve as a reliable biomarker of genomic instability and genotoxic exposure. Elevation of MN is commonly observed in cells bearing intrinsic genomic instability and in normal cells exposed to genotoxic agents. DNA double-strand breaks are marked by phosphorylation of H2AX at serine 139 (γ-H2AX). One subclass of MN contains massive and uniform γ-H2AX signals. This study tested whether this subclass of MN can be induced by replication stress. PRINCIPAL FINDINGS: We observed that a large proportion of MN, from 20% to nearly 50%, showed uniform staining by antibodies against γ-H2AX, a marker of DNA double-strand breaks (DSBs). Such micronuclei were designated as MN-γ–H2AX (+). We showed that such MN can be induced by chemicals that are known to cause DNA replication stress and S phase arrest. Hydroxyurea, aphidicolin and thymidine could all significantly induce MN-γ–H2AX (+), which were formed during S phase and appeared to be derived from aggregation of DSBs. MN-γ–H2AX (−), MN that were devoid of uniform γ-H2AX signals, were induced to a lesser extent in terms of fold change. Paclitaxel, which inhibits the disassembly of microtubules, only induced MN-γ–H2AX (−). The frequency of MN-γ–H2AX (+), but not that of MN-γ–H2AX (−), was also significantly increased in cells that experience S phase prolongation due to depletion of cell cycle regulator CUL4B. Depletion of replication protein A1 (RPA1) by RNA interference resulted in an elevation of both MN-γ–H2AX (+) and MN-γ–H2AX (−). CONCLUSIONS/SIGNIFICANCE: A subclass of MN, MN-γ–H2AX (+), can be preferentially induced by replication stress. Classification of MN according to their γ-H2AX status may provide a more refined evaluation of intrinsic genomic instabilities and the various environmental genotoxicants.