Cargando…
Melanoma Spheroids Grown Under Neural Crest Cell Conditions Are Highly Plastic Migratory/Invasive Tumor Cells Endowed with Immunomodulator Function
BACKGROUND: The aggressiveness of melanoma tumors is likely to rely on their well-recognized heterogeneity and plasticity. Melanoma comprises multi-subpopulations of cancer cells some of which may possess stem cell-like properties. Although useful, the sphere-formation assay to identify stem cell-li...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3078142/ https://www.ncbi.nlm.nih.gov/pubmed/21526207 http://dx.doi.org/10.1371/journal.pone.0018784 |
_version_ | 1782201922798747648 |
---|---|
author | Ramgolam, Kiran Lauriol, Jessica Lalou, Claude Lauden, Laura Michel, Laurence de la Grange, Pierre Khatib, Abdel-Majid Aoudjit, Fawzi Charron, Dominique Alcaide-Loridan, Catherine Al-Daccak, Reem |
author_facet | Ramgolam, Kiran Lauriol, Jessica Lalou, Claude Lauden, Laura Michel, Laurence de la Grange, Pierre Khatib, Abdel-Majid Aoudjit, Fawzi Charron, Dominique Alcaide-Loridan, Catherine Al-Daccak, Reem |
author_sort | Ramgolam, Kiran |
collection | PubMed |
description | BACKGROUND: The aggressiveness of melanoma tumors is likely to rely on their well-recognized heterogeneity and plasticity. Melanoma comprises multi-subpopulations of cancer cells some of which may possess stem cell-like properties. Although useful, the sphere-formation assay to identify stem cell-like or tumor initiating cell subpopulations in melanoma has been challenged, and it is unclear if this model can predict a functional phenotype associated with aggressive tumor cells. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the molecular and functional phenotypes of melanoma spheroids formed in neural crest cell medium. Whether from metastatic or advanced primary tumors, spheroid cells expressed melanoma-associated markers. They displayed higher capacity to differentiate along mesenchymal lineages and enhanced expression of SOX2, NANOG, KLF4, and/or OCT4 transcription factors, but not enhanced self-renewal or tumorigenicity when compared to their adherent counterparts. Gene expression profiling attributed a neural crest cell signature to these spheroids and indicated that a migratory/invasive and immune-function modulating program could be associated with these cells. In vitro assays confirmed that spheroids display enhanced migratory/invasive capacities. In immune activation assays, spheroid cells elicited a poorer allogenic response from immune cells and inhibited mitogen-dependent T cells activation and proliferation more efficiently than their adherent counterparts. Our findings reveal a novel immune-modulator function of melanoma spheroids and suggest specific roles for spheroids in invasion and in evasion of antitumor immunity. CONCLUSION/SIGNIFICANCE: The association of a more plastic, invasive and evasive, thus a more aggressive tumor phenotype with melanoma spheroids reveals a previously unrecognized aspect of tumor cells expanded as spheroid cultures. While of limited efficiency for melanoma initiating cell identification, our melanoma spheroid model predicted aggressive phenotype and suggested that aggressiveness and heterogeneity of melanoma tumors can be supported by subpopulations other than cancer stem cells. Therefore, it could be constructive to investigate melanoma aggressiveness, relevant to patients and clinical transferability. |
format | Text |
id | pubmed-3078142 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-30781422011-04-27 Melanoma Spheroids Grown Under Neural Crest Cell Conditions Are Highly Plastic Migratory/Invasive Tumor Cells Endowed with Immunomodulator Function Ramgolam, Kiran Lauriol, Jessica Lalou, Claude Lauden, Laura Michel, Laurence de la Grange, Pierre Khatib, Abdel-Majid Aoudjit, Fawzi Charron, Dominique Alcaide-Loridan, Catherine Al-Daccak, Reem PLoS One Research Article BACKGROUND: The aggressiveness of melanoma tumors is likely to rely on their well-recognized heterogeneity and plasticity. Melanoma comprises multi-subpopulations of cancer cells some of which may possess stem cell-like properties. Although useful, the sphere-formation assay to identify stem cell-like or tumor initiating cell subpopulations in melanoma has been challenged, and it is unclear if this model can predict a functional phenotype associated with aggressive tumor cells. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the molecular and functional phenotypes of melanoma spheroids formed in neural crest cell medium. Whether from metastatic or advanced primary tumors, spheroid cells expressed melanoma-associated markers. They displayed higher capacity to differentiate along mesenchymal lineages and enhanced expression of SOX2, NANOG, KLF4, and/or OCT4 transcription factors, but not enhanced self-renewal or tumorigenicity when compared to their adherent counterparts. Gene expression profiling attributed a neural crest cell signature to these spheroids and indicated that a migratory/invasive and immune-function modulating program could be associated with these cells. In vitro assays confirmed that spheroids display enhanced migratory/invasive capacities. In immune activation assays, spheroid cells elicited a poorer allogenic response from immune cells and inhibited mitogen-dependent T cells activation and proliferation more efficiently than their adherent counterparts. Our findings reveal a novel immune-modulator function of melanoma spheroids and suggest specific roles for spheroids in invasion and in evasion of antitumor immunity. CONCLUSION/SIGNIFICANCE: The association of a more plastic, invasive and evasive, thus a more aggressive tumor phenotype with melanoma spheroids reveals a previously unrecognized aspect of tumor cells expanded as spheroid cultures. While of limited efficiency for melanoma initiating cell identification, our melanoma spheroid model predicted aggressive phenotype and suggested that aggressiveness and heterogeneity of melanoma tumors can be supported by subpopulations other than cancer stem cells. Therefore, it could be constructive to investigate melanoma aggressiveness, relevant to patients and clinical transferability. Public Library of Science 2011-04-15 /pmc/articles/PMC3078142/ /pubmed/21526207 http://dx.doi.org/10.1371/journal.pone.0018784 Text en Ramgolam et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Ramgolam, Kiran Lauriol, Jessica Lalou, Claude Lauden, Laura Michel, Laurence de la Grange, Pierre Khatib, Abdel-Majid Aoudjit, Fawzi Charron, Dominique Alcaide-Loridan, Catherine Al-Daccak, Reem Melanoma Spheroids Grown Under Neural Crest Cell Conditions Are Highly Plastic Migratory/Invasive Tumor Cells Endowed with Immunomodulator Function |
title | Melanoma Spheroids Grown Under Neural Crest Cell Conditions Are Highly Plastic Migratory/Invasive Tumor Cells Endowed with Immunomodulator Function |
title_full | Melanoma Spheroids Grown Under Neural Crest Cell Conditions Are Highly Plastic Migratory/Invasive Tumor Cells Endowed with Immunomodulator Function |
title_fullStr | Melanoma Spheroids Grown Under Neural Crest Cell Conditions Are Highly Plastic Migratory/Invasive Tumor Cells Endowed with Immunomodulator Function |
title_full_unstemmed | Melanoma Spheroids Grown Under Neural Crest Cell Conditions Are Highly Plastic Migratory/Invasive Tumor Cells Endowed with Immunomodulator Function |
title_short | Melanoma Spheroids Grown Under Neural Crest Cell Conditions Are Highly Plastic Migratory/Invasive Tumor Cells Endowed with Immunomodulator Function |
title_sort | melanoma spheroids grown under neural crest cell conditions are highly plastic migratory/invasive tumor cells endowed with immunomodulator function |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3078142/ https://www.ncbi.nlm.nih.gov/pubmed/21526207 http://dx.doi.org/10.1371/journal.pone.0018784 |
work_keys_str_mv | AT ramgolamkiran melanomaspheroidsgrownunderneuralcrestcellconditionsarehighlyplasticmigratoryinvasivetumorcellsendowedwithimmunomodulatorfunction AT laurioljessica melanomaspheroidsgrownunderneuralcrestcellconditionsarehighlyplasticmigratoryinvasivetumorcellsendowedwithimmunomodulatorfunction AT lalouclaude melanomaspheroidsgrownunderneuralcrestcellconditionsarehighlyplasticmigratoryinvasivetumorcellsendowedwithimmunomodulatorfunction AT laudenlaura melanomaspheroidsgrownunderneuralcrestcellconditionsarehighlyplasticmigratoryinvasivetumorcellsendowedwithimmunomodulatorfunction AT michellaurence melanomaspheroidsgrownunderneuralcrestcellconditionsarehighlyplasticmigratoryinvasivetumorcellsendowedwithimmunomodulatorfunction AT delagrangepierre melanomaspheroidsgrownunderneuralcrestcellconditionsarehighlyplasticmigratoryinvasivetumorcellsendowedwithimmunomodulatorfunction AT khatibabdelmajid melanomaspheroidsgrownunderneuralcrestcellconditionsarehighlyplasticmigratoryinvasivetumorcellsendowedwithimmunomodulatorfunction AT aoudjitfawzi melanomaspheroidsgrownunderneuralcrestcellconditionsarehighlyplasticmigratoryinvasivetumorcellsendowedwithimmunomodulatorfunction AT charrondominique melanomaspheroidsgrownunderneuralcrestcellconditionsarehighlyplasticmigratoryinvasivetumorcellsendowedwithimmunomodulatorfunction AT alcaideloridancatherine melanomaspheroidsgrownunderneuralcrestcellconditionsarehighlyplasticmigratoryinvasivetumorcellsendowedwithimmunomodulatorfunction AT aldaccakreem melanomaspheroidsgrownunderneuralcrestcellconditionsarehighlyplasticmigratoryinvasivetumorcellsendowedwithimmunomodulatorfunction |