Cargando…

Rosmarinic Acid, Active Component of Dansam-Eum Attenuates Ototoxicity of Cochlear Hair Cells through Blockage of Caspase-1 Activity

Cisplatin causes auditory impairment due to the apoptosis of auditory hair cells. There is no strategy to regulate ototoxicity by cisplatin thus far. Dansam-Eum (DSE) has been used for treating the central nerve system injury including hearing loss in Korea. However, disease-related scientific inves...

Descripción completa

Detalles Bibliográficos
Autores principales: Jeong, Hyun-Ja, Choi, Youngjin, Kim, Min-Ho, Kang, In-Cheol, Lee, Jeong-Han, Park, Channy, Park, Raekil, Kim, Hyung-Min
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3078149/
https://www.ncbi.nlm.nih.gov/pubmed/21526214
http://dx.doi.org/10.1371/journal.pone.0018815
Descripción
Sumario:Cisplatin causes auditory impairment due to the apoptosis of auditory hair cells. There is no strategy to regulate ototoxicity by cisplatin thus far. Dansam-Eum (DSE) has been used for treating the central nerve system injury including hearing loss in Korea. However, disease-related scientific investigation by DSE has not been elucidated. Here, we demonstrated that DSE and its component rosmarinic acid (RA) were shown to inhibit apoptosis of the primary organ of Corti explants as well as the auditory cells. Administration of DSE and RA reduced the thresholds of the auditory brainstem response in cisplatin-injected mice. A molecular docking simulation and a kinetic assay show that RA controls the activity of caspase-1 by interaction with the active site of caspase-1. Pretreatment of RA inhibited caspase-1 downstream signal pathway, such as the activation of caspase-3 and 9, release of cytochrome c, translocation of apoptosis-inducing factor, up-regulation of Bax, down-regulation of Bcl-2, generation of reactive oxygen species, and activation of nuclear factor-κB. Anticancer activity by cisplatin was not affected by treatment with RA in SNU668, A549, HCT116, and HeLa cells but not B16F10 cells. These findings show that blocking a critical step by RA in apoptosis may be useful strategy to prevent harmful side effects of ototoxicity in patients with having to undergo chemotherapy.