Cargando…

Multifunctional transcription factor TFII-I is an activator of BRCA1 function

BACKGROUND: The TFII-I is a multifunctional transcriptional factor known to bind specifically to several DNA sequence elements and to mediate growth factor signalling. A microdeletion at the chromosomal location 7q11.23 encoding TFII-I and the related family of transcription factors may result in th...

Descripción completa

Detalles Bibliográficos
Autores principales: Tanikawa, M, Wada-Hiraike, O, Nakagawa, S, Shirane, A, Hiraike, H, Koyama, S, Miyamoto, Y, Sone, K, Tsuruga, T, Nagasaka, K, Matsumoto, Y, Ikeda, Y, Shoji, K, Oda, K, Fukuhara, H, Nakagawa, K, Kato, S, Yano, T, Taketani, Y
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3078593/
https://www.ncbi.nlm.nih.gov/pubmed/21407215
http://dx.doi.org/10.1038/bjc.2011.75
Descripción
Sumario:BACKGROUND: The TFII-I is a multifunctional transcriptional factor known to bind specifically to several DNA sequence elements and to mediate growth factor signalling. A microdeletion at the chromosomal location 7q11.23 encoding TFII-I and the related family of transcription factors may result in the onset of Williams–Beuren syndrome, an autosomal dominant genetic disorder characterised by a unique cognitive profile, diabetes, hypertension, anxiety, and craniofacial defects. Hereditary breast and ovarian cancer susceptibility gene product BRCA1 has been shown to serve as a positive regulator of SIRT1 expression by binding to the promoter region of SIRT1, but cross talk between BRCA1 and TFII-I has not been investigated to date. METHODS: A physical interaction between TFII-I and BRCA1 was explored. To determine pathophysiological function of TFII-I, its role as a transcriptional cofactor for BRCA1 was investigated. RESULTS: We found a physical interaction between the carboxyl terminus of TFII-I and the carboxyl terminus of BRCA1, also known as the BRCT domain. Endogenous TFII-I and BRCA1 form a complex in nuclei of intact cells and formation of irradiation-induced nuclear foci was observed. We also showed that the expression of TFII-I stimulates the transcriptional activation function of BRCT by a transient expression assay. The expression of TFII-I also enhanced the transcriptional activation of the SIRT1 promoter mediated by full-length BRCA1. CONCLUSION: These results revealed the intrinsic mechanism that TFII-I may modulate the cellular functions of BRCA1, and provide important implications to understand the development of breast cancer.