Cargando…

Neuronal Response Clamp

Responses of individual neurons to ongoing input are highly variable, reflecting complex threshold dynamics. Experimental access to this threshold dynamics is required in order to fully characterize neuronal input–output relationships. The challenge is practically intractable using present day exper...

Descripción completa

Detalles Bibliográficos
Autores principales: Wallach, Avner, Eytan, Danny, Gal, Asaf, Zrenner, Christoph, Marom, Shimon
Formato: Texto
Lenguaje:English
Publicado: Frontiers Research Foundation 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3078750/
https://www.ncbi.nlm.nih.gov/pubmed/21519391
http://dx.doi.org/10.3389/fneng.2011.00003
Descripción
Sumario:Responses of individual neurons to ongoing input are highly variable, reflecting complex threshold dynamics. Experimental access to this threshold dynamics is required in order to fully characterize neuronal input–output relationships. The challenge is practically intractable using present day experimental paradigms due to the cumulative, non-linear interactions involved. Here we introduce the Neuronal Response Clamp, a closed-loop technique enabling control over the instantaneous response probability of the neuron. The potential of the technique is demonstrated by showing direct access to threshold dynamics of cortical neuron in vitro using extracellular recording and stimulation, over timescales ranging from seconds to many hours. Moreover, the method allowed us to expose the sensitivity of threshold dynamics to spontaneous input from the network in which the neuron is embedded. The Response-Clamp technique follows the rationale of the voltage-clamp and dynamic-clamp approaches, extending it to the neuron's spiking behavior. The general framework offered here is applicable in the study of other neural systems, beyond the single neuron level.