Cargando…
A versatile in vivo system for directed dissection of gene expression patterns
Tissue-specific gene expression using the UAS/GAL4 binary system has facilitated genetic dissection of many biological processes in Drosophila melanogaster. Refining GAL4 expression patterns or independently manipulating multiple cell populations using additional binary systems are common experiment...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3079545/ https://www.ncbi.nlm.nih.gov/pubmed/21473015 |
Sumario: | Tissue-specific gene expression using the UAS/GAL4 binary system has facilitated genetic dissection of many biological processes in Drosophila melanogaster. Refining GAL4 expression patterns or independently manipulating multiple cell populations using additional binary systems are common experimental goals. To simplify these processes, we have developed a convertible genetic platform, called the Integrase Swappable In vivo Targeting Element (InSITE) system. This approach allows GAL4 to be replaced with any other sequence, placing different genetic effectors under the control of the same regulatory elements. Using InSITE, GAL4 can be replaced with LexA or QF, allowing an expression pattern to be repurposed. GAL4 can also be replaced with GAL80 or split-GAL4 hemi-drivers, allowing intersectional approaches to refine expression patterns. The exchanges occur through efficient, in vivo manipulations, making it possible to generate many swaps in parallel. Furthermore, this system is entirely modular, allowing future genetic tools to be easily incorporated into the existing framework. |
---|