Cargando…
A supervised visual model for finding regions of interest in basal cell carcinoma images
This paper introduces a supervised learning method for finding diagnostic regions of interest in histopathological images. The method is based on the cognitive process of visual selection of relevant regions that arises during a pathologist's image examination. The proposed strategy emulates th...
Autores principales: | Gutiérrez, Ricardo, Gómez, Francisco, Roa-Peña, Lucía, Romero, Eduardo |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3079595/ https://www.ncbi.nlm.nih.gov/pubmed/21447178 http://dx.doi.org/10.1186/1746-1596-6-26 |
Ejemplares similares
-
A visual model approach to extract regions of interest in microscopical images of basal cell carcinoma
por: Gutiérrez, Ricardo, et al.
Publicado: (2013) -
An experimental study of pathologist's navigation patterns in virtual microscopy
por: Roa-Peña, Lucia, et al.
Publicado: (2010) -
Weakly supervised detection and classification of basal cell carcinoma using graph-transformer on whole slide images
por: Yacob, Filmon, et al.
Publicado: (2023) -
Supervision of motor cortex by basal ganglia
por: Tripp, Bryan, et al.
Publicado: (2007) -
Magnetic Resonance Imaging Findings Differentiating Cutaneous Basal Cell Carcinoma from Squamous Cell Carcinoma in the Head and Neck Region
por: Kawaguchi, Masaya, et al.
Publicado: (2020)