Cargando…
Module-based multiscale simulation of angiogenesis in skeletal muscle
BACKGROUND: Mathematical modeling of angiogenesis has been gaining momentum as a means to shed new light on the biological complexity underlying blood vessel growth. A variety of computational models have been developed, each focusing on different aspects of the angiogenesis process and occurring at...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3079676/ https://www.ncbi.nlm.nih.gov/pubmed/21463529 http://dx.doi.org/10.1186/1742-4682-8-6 |
_version_ | 1782202043273838592 |
---|---|
author | Liu, Gang Qutub, Amina A Vempati, Prakash Mac Gabhann, Feilim Popel, Aleksander S |
author_facet | Liu, Gang Qutub, Amina A Vempati, Prakash Mac Gabhann, Feilim Popel, Aleksander S |
author_sort | Liu, Gang |
collection | PubMed |
description | BACKGROUND: Mathematical modeling of angiogenesis has been gaining momentum as a means to shed new light on the biological complexity underlying blood vessel growth. A variety of computational models have been developed, each focusing on different aspects of the angiogenesis process and occurring at different biological scales, ranging from the molecular to the tissue levels. Integration of models at different scales is a challenging and currently unsolved problem. RESULTS: We present an object-oriented module-based computational integration strategy to build a multiscale model of angiogenesis that links currently available models. As an example case, we use this approach to integrate modules representing microvascular blood flow, oxygen transport, vascular endothelial growth factor transport and endothelial cell behavior (sensing, migration and proliferation). Modeling methodologies in these modules include algebraic equations, partial differential equations and agent-based models with complex logical rules. We apply this integrated model to simulate exercise-induced angiogenesis in skeletal muscle. The simulation results compare capillary growth patterns between different exercise conditions for a single bout of exercise. Results demonstrate how the computational infrastructure can effectively integrate multiple modules by coordinating their connectivity and data exchange. Model parameterization offers simulation flexibility and a platform for performing sensitivity analysis. CONCLUSIONS: This systems biology strategy can be applied to larger scale integration of computational models of angiogenesis in skeletal muscle, or other complex processes in other tissues under physiological and pathological conditions. |
format | Text |
id | pubmed-3079676 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-30796762011-04-20 Module-based multiscale simulation of angiogenesis in skeletal muscle Liu, Gang Qutub, Amina A Vempati, Prakash Mac Gabhann, Feilim Popel, Aleksander S Theor Biol Med Model Research BACKGROUND: Mathematical modeling of angiogenesis has been gaining momentum as a means to shed new light on the biological complexity underlying blood vessel growth. A variety of computational models have been developed, each focusing on different aspects of the angiogenesis process and occurring at different biological scales, ranging from the molecular to the tissue levels. Integration of models at different scales is a challenging and currently unsolved problem. RESULTS: We present an object-oriented module-based computational integration strategy to build a multiscale model of angiogenesis that links currently available models. As an example case, we use this approach to integrate modules representing microvascular blood flow, oxygen transport, vascular endothelial growth factor transport and endothelial cell behavior (sensing, migration and proliferation). Modeling methodologies in these modules include algebraic equations, partial differential equations and agent-based models with complex logical rules. We apply this integrated model to simulate exercise-induced angiogenesis in skeletal muscle. The simulation results compare capillary growth patterns between different exercise conditions for a single bout of exercise. Results demonstrate how the computational infrastructure can effectively integrate multiple modules by coordinating their connectivity and data exchange. Model parameterization offers simulation flexibility and a platform for performing sensitivity analysis. CONCLUSIONS: This systems biology strategy can be applied to larger scale integration of computational models of angiogenesis in skeletal muscle, or other complex processes in other tissues under physiological and pathological conditions. BioMed Central 2011-04-04 /pmc/articles/PMC3079676/ /pubmed/21463529 http://dx.doi.org/10.1186/1742-4682-8-6 Text en Copyright ©2011 Liu et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Liu, Gang Qutub, Amina A Vempati, Prakash Mac Gabhann, Feilim Popel, Aleksander S Module-based multiscale simulation of angiogenesis in skeletal muscle |
title | Module-based multiscale simulation of angiogenesis in skeletal muscle |
title_full | Module-based multiscale simulation of angiogenesis in skeletal muscle |
title_fullStr | Module-based multiscale simulation of angiogenesis in skeletal muscle |
title_full_unstemmed | Module-based multiscale simulation of angiogenesis in skeletal muscle |
title_short | Module-based multiscale simulation of angiogenesis in skeletal muscle |
title_sort | module-based multiscale simulation of angiogenesis in skeletal muscle |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3079676/ https://www.ncbi.nlm.nih.gov/pubmed/21463529 http://dx.doi.org/10.1186/1742-4682-8-6 |
work_keys_str_mv | AT liugang modulebasedmultiscalesimulationofangiogenesisinskeletalmuscle AT qutubaminaa modulebasedmultiscalesimulationofangiogenesisinskeletalmuscle AT vempatiprakash modulebasedmultiscalesimulationofangiogenesisinskeletalmuscle AT macgabhannfeilim modulebasedmultiscalesimulationofangiogenesisinskeletalmuscle AT popelaleksanders modulebasedmultiscalesimulationofangiogenesisinskeletalmuscle |