Cargando…

Congenital bone marrow failure in DNA-PKcs mutant mice associated with deficiencies in DNA repair

The nonhomologous end-joining (NHEJ) pathway is essential for radioresistance and lymphocyte-specific V(D)J (variable [diversity] joining) recombination. Defects in NHEJ also impair hematopoietic stem cell (HSC) activity with age but do not affect the initial establishment of HSC reserves. In this p...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Shichuan, Yajima, Hirohiko, Huynh, HoangDinh, Zheng, Junke, Callen, Elsa, Chen, Hua-Tang, Wong, Nancy, Bunting, Samuel, Lin, Yu-Fen, Li, Mengxia, Lee, Kyung-Jone, Story, Michael, Gapud, Eric, Sleckman, Barry P., Nussenzweig, André, Zhang, Cheng Cheng, Chen, David J., Chen, Benjamin P.C.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080267/
https://www.ncbi.nlm.nih.gov/pubmed/21482716
http://dx.doi.org/10.1083/jcb.201009074
Descripción
Sumario:The nonhomologous end-joining (NHEJ) pathway is essential for radioresistance and lymphocyte-specific V(D)J (variable [diversity] joining) recombination. Defects in NHEJ also impair hematopoietic stem cell (HSC) activity with age but do not affect the initial establishment of HSC reserves. In this paper, we report that, in contrast to deoxyribonucleic acid (DNA)–dependent protein kinase catalytic subunit (DNA-PKcs)–null mice, knockin mice with the DNA-PKcs(3A/3A) allele, which codes for three alanine substitutions at the mouse Thr2605 phosphorylation cluster, die prematurely because of congenital bone marrow failure. Impaired proliferation of DNA-PKcs(3A/3A) HSCs is caused by excessive DNA damage and p53-dependent apoptosis. In addition, increased apoptosis in the intestinal crypt and epidermal hyperpigmentation indicate the presence of elevated genotoxic stress and p53 activation. Analysis of embryonic fibroblasts further reveals that DNA-PKcs(3A/3A) cells are hypersensitive to DNA cross-linking agents and are defective in both homologous recombination and the Fanconi anemia DNA damage response pathways. We conclude that phosphorylation of DNA-PKcs is essential for the normal activation of multiple DNA repair pathways, which in turn is critical for the maintenance of diverse populations of tissue stem cells in mice.