Cargando…
Learning genetic epistasis using Bayesian network scoring criteria
BACKGROUND: Gene-gene epistatic interactions likely play an important role in the genetic basis of many common diseases. Recently, machine-learning and data mining methods have been developed for learning epistatic relationships from data. A well-known combinatorial method that has been successfully...
Autores principales: | Jiang, Xia, Neapolitan, Richard E, Barmada, M Michael, Visweswaran, Shyam |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080825/ https://www.ncbi.nlm.nih.gov/pubmed/21453508 http://dx.doi.org/10.1186/1471-2105-12-89 |
Ejemplares similares
-
Discovering causal interactions using Bayesian network scoring and information gain
por: Zeng, Zexian, et al.
Publicado: (2016) -
Bayesian neural networks for detecting epistasis in genetic association studies
por: Beam, Andrew L, et al.
Publicado: (2014) -
Learning Predictive Interactions Using Information Gain and Bayesian Network Scoring
por: Jiang, Xia, et al.
Publicado: (2015) -
Identifying genetic interactions associated with late-onset Alzheimer’s disease
por: Floudas, Charalampos S, et al.
Publicado: (2014) -
Leveraging Bayesian networks and information theory to learn risk factors for breast cancer metastasis
por: Jiang, Xia, et al.
Publicado: (2020)