Cargando…

Development of an online SPE–LC–MS-based assay using endogenous substrate for investigation of soluble epoxide hydrolase (sEH) inhibitors

Soluble epoxide hydrolase (sEH) is a promising therapeutic target for the treatment of hypertension, pain, and inflammation-related diseases. In order to enable the development of sEH inhibitors (sEHIs), assays are needed for determination of their potency. Therefore, we developed a new method utili...

Descripción completa

Detalles Bibliográficos
Autores principales: Schebb, Nils Helge, Huby, Marion, Morisseau, Christophe, Hwang, Sung Hee, Hammock, Bruce D.
Formato: Texto
Lenguaje:English
Publicado: Springer-Verlag 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3081056/
https://www.ncbi.nlm.nih.gov/pubmed/21479549
http://dx.doi.org/10.1007/s00216-011-4861-2
_version_ 1782202175195185152
author Schebb, Nils Helge
Huby, Marion
Morisseau, Christophe
Hwang, Sung Hee
Hammock, Bruce D.
author_facet Schebb, Nils Helge
Huby, Marion
Morisseau, Christophe
Hwang, Sung Hee
Hammock, Bruce D.
author_sort Schebb, Nils Helge
collection PubMed
description Soluble epoxide hydrolase (sEH) is a promising therapeutic target for the treatment of hypertension, pain, and inflammation-related diseases. In order to enable the development of sEH inhibitors (sEHIs), assays are needed for determination of their potency. Therefore, we developed a new method utilizing an epoxide of arachidonic acid (14(15)-EpETrE) as substrate. Incubation samples were directly injected without purification into an online solid phase extraction (SPE) liquid chromatography electrospray ionization tandem mass spectrometry (LC–ESI–MS–MS) setup allowing a total run time of only 108 s for a full gradient separation. Analytes were extracted from the matrix within 30 s by turbulent flow chromatography. Subsequently, a full gradient separation was carried out on a 50X2.1 mm RP-18 column filled with 1.7 μm core–shell particles. The analytes were detected with high sensitivity by ESI–MS–MS in SRM mode. The substrate 14(15)-EpETrE eluted at a stable retention time of 96 ± 1 s and its sEH hydrolysis product 14,15-DiHETrE at 63 ± 1 s with narrow peak width (full width at half maximum height: 1.5 ± 0.1 s). The analytical performance of the method was excellent, with a limit of detection of 2 fmol on column, a linear range of over three orders of magnitude, and a negligible carry-over of 0.1% for 14,15-DiHETrE. The enzyme assay was carried out in a 96-well plate format, and near perfect sigmoidal dose–response curves were obtained for 12 concentrations of each inhibitor in only 22 min, enabling precise determination of IC(50) values. In contrast with other approaches, this method enables quantitative evaluation of potent sEHIs with picomolar potencies because only 33 pmol L(−1) sEH were used in the reaction vessel. This was demonstrated by ranking ten compounds by their activity; in the fluorescence method all yielded IC(50) ≤ 1 nmol L(−1). Comparison of 13 inhibitors with IC(50) values >1 nmol L(−1) showed a good correlation with the fluorescence method (linear correlation coefficient 0.9, slope 0.95, Spearman’s rho 0.9). For individual compounds, however, up to eightfold differences in potencies between this and the fluorescence method were obtained. Therefore, enzyme assays using natural substrate, as described here, are indispensable for reliable determination of structure–activity relationships for sEH inhibition. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00216-011-4861-2) contains supplementary material, which is available to authorized users.
format Text
id pubmed-3081056
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Springer-Verlag
record_format MEDLINE/PubMed
spelling pubmed-30810562011-06-06 Development of an online SPE–LC–MS-based assay using endogenous substrate for investigation of soluble epoxide hydrolase (sEH) inhibitors Schebb, Nils Helge Huby, Marion Morisseau, Christophe Hwang, Sung Hee Hammock, Bruce D. Anal Bioanal Chem Original Paper Soluble epoxide hydrolase (sEH) is a promising therapeutic target for the treatment of hypertension, pain, and inflammation-related diseases. In order to enable the development of sEH inhibitors (sEHIs), assays are needed for determination of their potency. Therefore, we developed a new method utilizing an epoxide of arachidonic acid (14(15)-EpETrE) as substrate. Incubation samples were directly injected without purification into an online solid phase extraction (SPE) liquid chromatography electrospray ionization tandem mass spectrometry (LC–ESI–MS–MS) setup allowing a total run time of only 108 s for a full gradient separation. Analytes were extracted from the matrix within 30 s by turbulent flow chromatography. Subsequently, a full gradient separation was carried out on a 50X2.1 mm RP-18 column filled with 1.7 μm core–shell particles. The analytes were detected with high sensitivity by ESI–MS–MS in SRM mode. The substrate 14(15)-EpETrE eluted at a stable retention time of 96 ± 1 s and its sEH hydrolysis product 14,15-DiHETrE at 63 ± 1 s with narrow peak width (full width at half maximum height: 1.5 ± 0.1 s). The analytical performance of the method was excellent, with a limit of detection of 2 fmol on column, a linear range of over three orders of magnitude, and a negligible carry-over of 0.1% for 14,15-DiHETrE. The enzyme assay was carried out in a 96-well plate format, and near perfect sigmoidal dose–response curves were obtained for 12 concentrations of each inhibitor in only 22 min, enabling precise determination of IC(50) values. In contrast with other approaches, this method enables quantitative evaluation of potent sEHIs with picomolar potencies because only 33 pmol L(−1) sEH were used in the reaction vessel. This was demonstrated by ranking ten compounds by their activity; in the fluorescence method all yielded IC(50) ≤ 1 nmol L(−1). Comparison of 13 inhibitors with IC(50) values >1 nmol L(−1) showed a good correlation with the fluorescence method (linear correlation coefficient 0.9, slope 0.95, Spearman’s rho 0.9). For individual compounds, however, up to eightfold differences in potencies between this and the fluorescence method were obtained. Therefore, enzyme assays using natural substrate, as described here, are indispensable for reliable determination of structure–activity relationships for sEH inhibition. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00216-011-4861-2) contains supplementary material, which is available to authorized users. Springer-Verlag 2011-04-09 2011 /pmc/articles/PMC3081056/ /pubmed/21479549 http://dx.doi.org/10.1007/s00216-011-4861-2 Text en © The Author(s) 2011 https://creativecommons.org/licenses/by-nc/4.0/This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
spellingShingle Original Paper
Schebb, Nils Helge
Huby, Marion
Morisseau, Christophe
Hwang, Sung Hee
Hammock, Bruce D.
Development of an online SPE–LC–MS-based assay using endogenous substrate for investigation of soluble epoxide hydrolase (sEH) inhibitors
title Development of an online SPE–LC–MS-based assay using endogenous substrate for investigation of soluble epoxide hydrolase (sEH) inhibitors
title_full Development of an online SPE–LC–MS-based assay using endogenous substrate for investigation of soluble epoxide hydrolase (sEH) inhibitors
title_fullStr Development of an online SPE–LC–MS-based assay using endogenous substrate for investigation of soluble epoxide hydrolase (sEH) inhibitors
title_full_unstemmed Development of an online SPE–LC–MS-based assay using endogenous substrate for investigation of soluble epoxide hydrolase (sEH) inhibitors
title_short Development of an online SPE–LC–MS-based assay using endogenous substrate for investigation of soluble epoxide hydrolase (sEH) inhibitors
title_sort development of an online spe–lc–ms-based assay using endogenous substrate for investigation of soluble epoxide hydrolase (seh) inhibitors
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3081056/
https://www.ncbi.nlm.nih.gov/pubmed/21479549
http://dx.doi.org/10.1007/s00216-011-4861-2
work_keys_str_mv AT schebbnilshelge developmentofanonlinespelcmsbasedassayusingendogenoussubstrateforinvestigationofsolubleepoxidehydrolasesehinhibitors
AT hubymarion developmentofanonlinespelcmsbasedassayusingendogenoussubstrateforinvestigationofsolubleepoxidehydrolasesehinhibitors
AT morisseauchristophe developmentofanonlinespelcmsbasedassayusingendogenoussubstrateforinvestigationofsolubleepoxidehydrolasesehinhibitors
AT hwangsunghee developmentofanonlinespelcmsbasedassayusingendogenoussubstrateforinvestigationofsolubleepoxidehydrolasesehinhibitors
AT hammockbruced developmentofanonlinespelcmsbasedassayusingendogenoussubstrateforinvestigationofsolubleepoxidehydrolasesehinhibitors